Summary: | An obvious strengthening phenomenon has been observed in the Mg-6Al-1Zn (AZ61) alloy after simultaneous loading and aging at 170 °C. Being different to aging after pre-strain, the simultaneous loading and aging can obviously increase the yield stress of the alloy. Microstructural analysis shows that a larger quantity of the Al<sub>12</sub>Mg<sub>17</sub> can be obtained by simultaneous loading and aging in a relatively short aging time, compared with aging after pre-strain. It is speculated that the loading during aging is more beneficial for nucleation of the precipitates. In the same aging time, it is found that the sample subjected to simultaneous loading and aging shows a higher yield stress than the sample aged after pre-strain. To extend aging time, a large quantity of Al<sub>12</sub>Mg<sub>17</sub> can be obtained in the pre-strained sample. However, it is demonstrated that the yield stress of the sample subjected to aging after pre-strain is lower than that of the sample subjected to simultaneous loading and aging, despite these two samples containing the same quantity of precipitates. It is speculated that the occurrence of the precipitates plays a role in preventing dislocation gliding and twin expanding, thus leading to a strengthening effect. Additionally, atoms segregated in twin boundaries may partly strengthen the material. It is found that a large quantity of precipitates can be obtained in a relatively short aging time by using the simultaneous loading and aging, reducing the softening effect caused by aging. The observed phenomenon may provide a new strategy for strengthening magnesium alloys.
|