A Positive Feedback Loop between Sestrin2 and mTORC2 Is Required for the Survival of Glutamine-Depleted Lung Cancer Cells

Proper regulation of mTORC1 and mTORC2 upon nutrient starvation is critical for cancer cell survival. Upregulation of Sestrin2 in response to glutamine deprivation rescues cell death by suppressing mTORC1. However, the contribution of mTORC2 to Sestrin2-mediated mTORC1 suppression remains unclear. H...

Full description

Bibliographic Details
Main Authors: Jun-Kyu Byun, Yeon-Kyung Choi, Ji-Hyun Kim, Ji Yun Jeong, Hui-Jeon Jeon, Mi-Kyung Kim, Ilseon Hwang, Shin-Yup Lee, You Mie Lee, In-Kyu Lee, Keun-Gyu Park
Format: Article
Language:English
Published: Elsevier 2017-07-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124717308975
Description
Summary:Proper regulation of mTORC1 and mTORC2 upon nutrient starvation is critical for cancer cell survival. Upregulation of Sestrin2 in response to glutamine deprivation rescues cell death by suppressing mTORC1. However, the contribution of mTORC2 to Sestrin2-mediated mTORC1 suppression remains unclear. Here, we report that both Sestrin2 and mTORC2 are upregulated in glutamine-depleted lung cancer cells. Moreover, glutamine depletion caused Sestrin2 to associate with mTORC2, which was required for the increase in Sestrin2 protein stability and the reduction in mTORC1 activity. Ultimately, differential regulation of mTORC1 and 2 by Sestrin2 reprogramed lipid metabolism and enabled glutamine-depleted lung cancer cells to survive by maintaining energy and redox balance. Importantly, combined inhibition of glutamine utilization and Sestrin2 induced lung cancer cell death both in vitro and in vivo. This study shows that differential Sestrin2-mediated regulation of mTORC1 and mTORC2 is necessary for the survival of glutamine-depleted lung cancer cells.
ISSN:2211-1247