Excited States Calculations of MoS<sub>2</sub>@ZnO and WS<sub>2</sub>@ZnO Two-Dimensional Nanocomposites for Water-Splitting Applications
Transition metal dichalcogenide (TMD) MoS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> a...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-12-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/15/1/150 |
_version_ | 1827668573554737152 |
---|---|
author | Yin-Pai Lin Boris Polyakov Edgars Butanovs Aleksandr A. Popov Maksim Sokolov Dmitry Bocharov Sergei Piskunov |
author_facet | Yin-Pai Lin Boris Polyakov Edgars Butanovs Aleksandr A. Popov Maksim Sokolov Dmitry Bocharov Sergei Piskunov |
author_sort | Yin-Pai Lin |
collection | DOAJ |
description | Transition metal dichalcogenide (TMD) MoS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> and WS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> monolayers (MLs) deposited atop of crystalline zinc oxide (ZnO) and graphene-like ZnO (g-ZnO) substrates have been investigated by means of density functional theory (DFT) using PBE and GLLBSC exchange-correlation functionals. In this work, the electronic structure and optical properties of studied hybrid nanomaterials are described in view of the influence of ZnO substrates thickness on the MoS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>@ZnO and WS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>@ZnO two-dimensional (2D) nanocomposites. The thicker ZnO substrate not only triggers the decrease of the imaginary part of dielectric function relatively to more thinner g-ZnO but also results in the less accumulated charge density in the vicinity of the Mo and W atoms at the conduction band minimum. Based on the results of our calculations, we predict that MoS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> and WS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> monolayers placed at g-ZnO substrate yield essential enhancement of the photoabsorption in the visible region of solar spectra and, thus, can be used as a promising catalyst for photo-driven water splitting applications. |
first_indexed | 2024-03-10T03:43:36Z |
format | Article |
id | doaj.art-95192ce5b05a4ad285b25fad7b248d32 |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-03-10T03:43:36Z |
publishDate | 2021-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-95192ce5b05a4ad285b25fad7b248d322023-11-23T11:26:17ZengMDPI AGEnergies1996-10732021-12-0115115010.3390/en15010150Excited States Calculations of MoS<sub>2</sub>@ZnO and WS<sub>2</sub>@ZnO Two-Dimensional Nanocomposites for Water-Splitting ApplicationsYin-Pai Lin0Boris Polyakov1Edgars Butanovs2Aleksandr A. Popov3Maksim Sokolov4Dmitry Bocharov5Sergei Piskunov6Institute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaTransition metal dichalcogenide (TMD) MoS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> and WS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> monolayers (MLs) deposited atop of crystalline zinc oxide (ZnO) and graphene-like ZnO (g-ZnO) substrates have been investigated by means of density functional theory (DFT) using PBE and GLLBSC exchange-correlation functionals. In this work, the electronic structure and optical properties of studied hybrid nanomaterials are described in view of the influence of ZnO substrates thickness on the MoS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>@ZnO and WS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>@ZnO two-dimensional (2D) nanocomposites. The thicker ZnO substrate not only triggers the decrease of the imaginary part of dielectric function relatively to more thinner g-ZnO but also results in the less accumulated charge density in the vicinity of the Mo and W atoms at the conduction band minimum. Based on the results of our calculations, we predict that MoS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> and WS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> monolayers placed at g-ZnO substrate yield essential enhancement of the photoabsorption in the visible region of solar spectra and, thus, can be used as a promising catalyst for photo-driven water splitting applications.https://www.mdpi.com/1996-1073/15/1/150MoS<sub>2</sub>@ZnO and WS<sub>2</sub>@ZnO nanostructuresphotocatalystexcited state calculationsphotoabsorptiondensity functional theory |
spellingShingle | Yin-Pai Lin Boris Polyakov Edgars Butanovs Aleksandr A. Popov Maksim Sokolov Dmitry Bocharov Sergei Piskunov Excited States Calculations of MoS<sub>2</sub>@ZnO and WS<sub>2</sub>@ZnO Two-Dimensional Nanocomposites for Water-Splitting Applications Energies MoS<sub>2</sub>@ZnO and WS<sub>2</sub>@ZnO nanostructures photocatalyst excited state calculations photoabsorption density functional theory |
title | Excited States Calculations of MoS<sub>2</sub>@ZnO and WS<sub>2</sub>@ZnO Two-Dimensional Nanocomposites for Water-Splitting Applications |
title_full | Excited States Calculations of MoS<sub>2</sub>@ZnO and WS<sub>2</sub>@ZnO Two-Dimensional Nanocomposites for Water-Splitting Applications |
title_fullStr | Excited States Calculations of MoS<sub>2</sub>@ZnO and WS<sub>2</sub>@ZnO Two-Dimensional Nanocomposites for Water-Splitting Applications |
title_full_unstemmed | Excited States Calculations of MoS<sub>2</sub>@ZnO and WS<sub>2</sub>@ZnO Two-Dimensional Nanocomposites for Water-Splitting Applications |
title_short | Excited States Calculations of MoS<sub>2</sub>@ZnO and WS<sub>2</sub>@ZnO Two-Dimensional Nanocomposites for Water-Splitting Applications |
title_sort | excited states calculations of mos sub 2 sub zno and ws sub 2 sub zno two dimensional nanocomposites for water splitting applications |
topic | MoS<sub>2</sub>@ZnO and WS<sub>2</sub>@ZnO nanostructures photocatalyst excited state calculations photoabsorption density functional theory |
url | https://www.mdpi.com/1996-1073/15/1/150 |
work_keys_str_mv | AT yinpailin excitedstatescalculationsofmossub2subznoandwssub2subznotwodimensionalnanocompositesforwatersplittingapplications AT borispolyakov excitedstatescalculationsofmossub2subznoandwssub2subznotwodimensionalnanocompositesforwatersplittingapplications AT edgarsbutanovs excitedstatescalculationsofmossub2subznoandwssub2subznotwodimensionalnanocompositesforwatersplittingapplications AT aleksandrapopov excitedstatescalculationsofmossub2subznoandwssub2subznotwodimensionalnanocompositesforwatersplittingapplications AT maksimsokolov excitedstatescalculationsofmossub2subznoandwssub2subznotwodimensionalnanocompositesforwatersplittingapplications AT dmitrybocharov excitedstatescalculationsofmossub2subznoandwssub2subznotwodimensionalnanocompositesforwatersplittingapplications AT sergeipiskunov excitedstatescalculationsofmossub2subznoandwssub2subznotwodimensionalnanocompositesforwatersplittingapplications |