Development and Testing of a Single-Axis Photovoltaic Sun Tracker through the Internet of Things

Solar tracking systems enable increased efficiency of a photovoltaic system through a continuous adjustment of its position with respect to the sun, thus increasing the generation of electrical energy. The integration of photovoltaic solar tracking systems in buildings and houses enables the energy...

Full description

Bibliographic Details
Main Authors: Sebastian Gutierrez, Pedro M. Rodrigo, Jeronimo Alvarez, Arturo Acero, Alejandro Montoya
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/10/2547
Description
Summary:Solar tracking systems enable increased efficiency of a photovoltaic system through a continuous adjustment of its position with respect to the sun, thus increasing the generation of electrical energy. The integration of photovoltaic solar tracking systems in buildings and houses enables the energy needs of users in a broader way to be covered. This integration is facilitated through the existence of technologies such as access to the Internet through Wi-Fi, which allows developing systems to be encompassed within the domain of the “Internet of Things” (IoT). In this study, a first-of-its-kind “open-loop” solar tracker was designed and developed, which executes the tracking algorithm in the Firebase web service and allows the exchange of data with said service through a NodeMCU development board, which has an integrated Wi-Fi module. After an experimental campaign in Aguascalientes, central Mexico, gains in terms of collected energy on average were measured at 29.9% in May compared to an optimally tilted fixed photovoltaic system. This study opens the possibility of integrating power generation systems into the IoT domain, which, among other things, allows for constant monitoring of the behavior of the system.
ISSN:1996-1073