Hartman-type comparison theorems for half-linear differential equations of the second order

Comparison theorem of the Hartman type for a continuous family of nonlinear differential equations of the form $$ \big(p(t, \lambda)\varphi(u')\big)' + q(t,\lambda) \varphi(u) = 0, \lambda \geq 0, \quad \tag{ $\rm E_\lambda$}$$ where $ p \in \mathrm{C}([a,b]\times [0,\infty), (0,\infty)),...

Full description

Bibliographic Details
Main Author: Jaroslav Jaroš
Format: Article
Language:English
Published: University of Szeged 2012-10-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1804
Description
Summary:Comparison theorem of the Hartman type for a continuous family of nonlinear differential equations of the form $$ \big(p(t, \lambda)\varphi(u')\big)' + q(t,\lambda) \varphi(u) = 0, \lambda \geq 0, \quad \tag{ $\rm E_\lambda$}$$ where $ p \in \mathrm{C}([a,b]\times [0,\infty), (0,\infty)), q \in \mathrm{C}([a,b] \times [0,\infty),\mathbb{R}), i = 1, ..., n,$ and $\varphi(s) :=|s|^{\alpha-1} s$ for $s \not= 0$ and $\varphi (0) = 0$, is proved with the help of the generalized Mingarelli's identity.
ISSN:1417-3875