Transversal Jacobi Operators in Almost Contact Manifolds

Along a transversal geodesic <inline-formula><math display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> whose tangent belongs to the contact distribution <i>D</i>, we define the transversal Jacobi operator &l...

Full description

Bibliographic Details
Main Authors: Jong Taek Cho, Makoto Kimura
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/1/31
_version_ 1797543580676390912
author Jong Taek Cho
Makoto Kimura
author_facet Jong Taek Cho
Makoto Kimura
author_sort Jong Taek Cho
collection DOAJ
description Along a transversal geodesic <inline-formula><math display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> whose tangent belongs to the contact distribution <i>D</i>, we define the transversal Jacobi operator <inline-formula><math display="inline"><semantics><mrow><msub><mi>R</mi><mi>γ</mi></msub><mo>=</mo><mi>R</mi><mrow><mo>(</mo><mo>·</mo><mo>,</mo><mover accent="true"><mi>γ</mi><mo>˙</mo></mover><mo>)</mo></mrow><mover accent="true"><mi>γ</mi><mo>˙</mo></mover></mrow></semantics></math></inline-formula> on an almost contact Riemannian manifold <i>M</i>. Then, using the transversal Jacobi operator <inline-formula><math display="inline"><semantics><msub><mi>R</mi><mi>γ</mi></msub></semantics></math></inline-formula>, we give a new characterization of the Sasakian sphere. In the second part, we characterize the complete ruled real hypersurfaces in complex hyperbolic space.
first_indexed 2024-03-10T13:47:40Z
format Article
id doaj.art-953b4d1c4fee4dc590331ce3404c4cc8
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T13:47:40Z
publishDate 2020-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-953b4d1c4fee4dc590331ce3404c4cc82023-11-21T02:27:16ZengMDPI AGMathematics2227-73902020-12-01913110.3390/math9010031Transversal Jacobi Operators in Almost Contact ManifoldsJong Taek Cho0Makoto Kimura1Department of Mathematics, Chonnam National University, Gwangju 61186, KoreaDepartment of Mathematics, Faculty of Science, Ibaraki University, Mito, Ibaraki 310-8512, JapanAlong a transversal geodesic <inline-formula><math display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> whose tangent belongs to the contact distribution <i>D</i>, we define the transversal Jacobi operator <inline-formula><math display="inline"><semantics><mrow><msub><mi>R</mi><mi>γ</mi></msub><mo>=</mo><mi>R</mi><mrow><mo>(</mo><mo>·</mo><mo>,</mo><mover accent="true"><mi>γ</mi><mo>˙</mo></mover><mo>)</mo></mrow><mover accent="true"><mi>γ</mi><mo>˙</mo></mover></mrow></semantics></math></inline-formula> on an almost contact Riemannian manifold <i>M</i>. Then, using the transversal Jacobi operator <inline-formula><math display="inline"><semantics><msub><mi>R</mi><mi>γ</mi></msub></semantics></math></inline-formula>, we give a new characterization of the Sasakian sphere. In the second part, we characterize the complete ruled real hypersurfaces in complex hyperbolic space.https://www.mdpi.com/2227-7390/9/1/31almost contact manifoldtransversal Jacobi operatorSasakian sphereruled real hypersurface
spellingShingle Jong Taek Cho
Makoto Kimura
Transversal Jacobi Operators in Almost Contact Manifolds
Mathematics
almost contact manifold
transversal Jacobi operator
Sasakian sphere
ruled real hypersurface
title Transversal Jacobi Operators in Almost Contact Manifolds
title_full Transversal Jacobi Operators in Almost Contact Manifolds
title_fullStr Transversal Jacobi Operators in Almost Contact Manifolds
title_full_unstemmed Transversal Jacobi Operators in Almost Contact Manifolds
title_short Transversal Jacobi Operators in Almost Contact Manifolds
title_sort transversal jacobi operators in almost contact manifolds
topic almost contact manifold
transversal Jacobi operator
Sasakian sphere
ruled real hypersurface
url https://www.mdpi.com/2227-7390/9/1/31
work_keys_str_mv AT jongtaekcho transversaljacobioperatorsinalmostcontactmanifolds
AT makotokimura transversaljacobioperatorsinalmostcontactmanifolds