Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial

In this paper, we extend Hardy’s type inequalities to convex functions of higher order. Upper bounds for the generalized Hardy’s inequality are given with some applications.

Bibliographic Details
Main Authors: Kristina Krulić Himmelreich, Josip Pečarić, Dora Pokaz, Marjan Praljak
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/15/1724
_version_ 1827686519456923648
author Kristina Krulić Himmelreich
Josip Pečarić
Dora Pokaz
Marjan Praljak
author_facet Kristina Krulić Himmelreich
Josip Pečarić
Dora Pokaz
Marjan Praljak
author_sort Kristina Krulić Himmelreich
collection DOAJ
description In this paper, we extend Hardy’s type inequalities to convex functions of higher order. Upper bounds for the generalized Hardy’s inequality are given with some applications.
first_indexed 2024-03-10T09:12:14Z
format Article
id doaj.art-954d06d95ac24dd39fe4b37c59087437
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T09:12:14Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-954d06d95ac24dd39fe4b37c590874372023-11-22T05:55:42ZengMDPI AGMathematics2227-73902021-07-01915172410.3390/math9151724Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating PolynomialKristina Krulić Himmelreich0Josip Pečarić1Dora Pokaz2Marjan Praljak3Faculty of Textile Technology, University of Zagreb, Prilaz Baruna Filipovica 28a, 10000 Zagreb, CroatiaCroatian Academy of Sciences and Arts, Trg Nikole Šubića Zrinskog, 10000 Zagreb, CroatiaFaculty of Civil Engineering, University of Zagreb, Fra Andrije Kačića-Miošića 26, 10000 Zagreb, CroatiaFaculty of Food Technology and Biotechnology, University of Zagreb, 6 Pierottijeva Street in Zagreb, 10000 Zagreb, CroatiaIn this paper, we extend Hardy’s type inequalities to convex functions of higher order. Upper bounds for the generalized Hardy’s inequality are given with some applications.https://www.mdpi.com/2227-7390/9/15/1724inequalitiesHardy type inequalitiesAbel–Gontscharoff interpolating polynomialGreen functionChebyshev functionalGrüss type inequalities
spellingShingle Kristina Krulić Himmelreich
Josip Pečarić
Dora Pokaz
Marjan Praljak
Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial
Mathematics
inequalities
Hardy type inequalities
Abel–Gontscharoff interpolating polynomial
Green function
Chebyshev functional
Grüss type inequalities
title Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial
title_full Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial
title_fullStr Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial
title_full_unstemmed Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial
title_short Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial
title_sort generalizations of hardy type inequalities by abel gontscharoff s interpolating polynomial
topic inequalities
Hardy type inequalities
Abel–Gontscharoff interpolating polynomial
Green function
Chebyshev functional
Grüss type inequalities
url https://www.mdpi.com/2227-7390/9/15/1724
work_keys_str_mv AT kristinakrulichimmelreich generalizationsofhardytypeinequalitiesbyabelgontscharoffsinterpolatingpolynomial
AT josippecaric generalizationsofhardytypeinequalitiesbyabelgontscharoffsinterpolatingpolynomial
AT dorapokaz generalizationsofhardytypeinequalitiesbyabelgontscharoffsinterpolatingpolynomial
AT marjanpraljak generalizationsofhardytypeinequalitiesbyabelgontscharoffsinterpolatingpolynomial