Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial
In this paper, we extend Hardy’s type inequalities to convex functions of higher order. Upper bounds for the generalized Hardy’s inequality are given with some applications.
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/15/1724 |
_version_ | 1827686519456923648 |
---|---|
author | Kristina Krulić Himmelreich Josip Pečarić Dora Pokaz Marjan Praljak |
author_facet | Kristina Krulić Himmelreich Josip Pečarić Dora Pokaz Marjan Praljak |
author_sort | Kristina Krulić Himmelreich |
collection | DOAJ |
description | In this paper, we extend Hardy’s type inequalities to convex functions of higher order. Upper bounds for the generalized Hardy’s inequality are given with some applications. |
first_indexed | 2024-03-10T09:12:14Z |
format | Article |
id | doaj.art-954d06d95ac24dd39fe4b37c59087437 |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-10T09:12:14Z |
publishDate | 2021-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-954d06d95ac24dd39fe4b37c590874372023-11-22T05:55:42ZengMDPI AGMathematics2227-73902021-07-01915172410.3390/math9151724Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating PolynomialKristina Krulić Himmelreich0Josip Pečarić1Dora Pokaz2Marjan Praljak3Faculty of Textile Technology, University of Zagreb, Prilaz Baruna Filipovica 28a, 10000 Zagreb, CroatiaCroatian Academy of Sciences and Arts, Trg Nikole Šubića Zrinskog, 10000 Zagreb, CroatiaFaculty of Civil Engineering, University of Zagreb, Fra Andrije Kačića-Miošića 26, 10000 Zagreb, CroatiaFaculty of Food Technology and Biotechnology, University of Zagreb, 6 Pierottijeva Street in Zagreb, 10000 Zagreb, CroatiaIn this paper, we extend Hardy’s type inequalities to convex functions of higher order. Upper bounds for the generalized Hardy’s inequality are given with some applications.https://www.mdpi.com/2227-7390/9/15/1724inequalitiesHardy type inequalitiesAbel–Gontscharoff interpolating polynomialGreen functionChebyshev functionalGrüss type inequalities |
spellingShingle | Kristina Krulić Himmelreich Josip Pečarić Dora Pokaz Marjan Praljak Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial Mathematics inequalities Hardy type inequalities Abel–Gontscharoff interpolating polynomial Green function Chebyshev functional Grüss type inequalities |
title | Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial |
title_full | Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial |
title_fullStr | Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial |
title_full_unstemmed | Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial |
title_short | Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial |
title_sort | generalizations of hardy type inequalities by abel gontscharoff s interpolating polynomial |
topic | inequalities Hardy type inequalities Abel–Gontscharoff interpolating polynomial Green function Chebyshev functional Grüss type inequalities |
url | https://www.mdpi.com/2227-7390/9/15/1724 |
work_keys_str_mv | AT kristinakrulichimmelreich generalizationsofhardytypeinequalitiesbyabelgontscharoffsinterpolatingpolynomial AT josippecaric generalizationsofhardytypeinequalitiesbyabelgontscharoffsinterpolatingpolynomial AT dorapokaz generalizationsofhardytypeinequalitiesbyabelgontscharoffsinterpolatingpolynomial AT marjanpraljak generalizationsofhardytypeinequalitiesbyabelgontscharoffsinterpolatingpolynomial |