Octonion Internal Space Algebra for the Standard Model

This paper surveys recent progress in our search for an appropriate internal space algebra for the standard model (SM) of particle physics. After a brief review of the existing approaches, we start with the Clifford algebras involving operators of left multiplication by octonions. A central role is...

Full description

Bibliographic Details
Main Author: Ivan Todorov
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/9/5/222
_version_ 1797598170265419776
author Ivan Todorov
author_facet Ivan Todorov
author_sort Ivan Todorov
collection DOAJ
description This paper surveys recent progress in our search for an appropriate internal space algebra for the standard model (SM) of particle physics. After a brief review of the existing approaches, we start with the Clifford algebras involving operators of left multiplication by octonions. A central role is played by a distinguished complex structure that implements the splitting of the octonions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">O</mi><mo>=</mo><mi mathvariant="double-struck">C</mi><mo>⊕</mo><msup><mrow><mi mathvariant="double-struck">C</mi></mrow><mn>3</mn></msup></mrow></semantics></math></inline-formula>, which reflect the lepton-quark symmetry. Such a complex structure on the 32-dimensional space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mo>ℓ</mo><mn>10</mn></msub></mrow></semantics></math></inline-formula> Majorana spinors is generated by the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mo>ℓ</mo><mn>6</mn></msub><mrow><mo>(</mo><mo>⊂</mo><mi>C</mi><msub><mo>ℓ</mo><mn>10</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> volume form, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mn>6</mn></msub><mo>=</mo><msub><mi>γ</mi><mn>1</mn></msub><mo>⋯</mo><msub><mi>γ</mi><mn>6</mn></msub></mrow></semantics></math></inline-formula>, and is left invariant by the Pati–Salam subgroup of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>p</mi><mi>i</mi><mi>n</mi><mo>(</mo><mn>10</mn><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>G</mi><mrow><mi>PS</mi></mrow></msub><mo>=</mo><mi>S</mi><mi>p</mi><mi>i</mi><mi>n</mi><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mo>×</mo><mi>S</mi><mi>p</mi><mi>i</mi><mi>n</mi><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow><mo>/</mo><msub><mi mathvariant="double-struck">Z</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>. While the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>p</mi><mi>i</mi><mi>n</mi><mo>(</mo><mn>10</mn><mo>)</mo></mrow></semantics></math></inline-formula> invariant volume form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mn>10</mn></msub><mo>=</mo><msub><mi>γ</mi><mn>1</mn></msub><mo>…</mo><msub><mi>γ</mi><mn>10</mn></msub></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mo>ℓ</mo><mn>10</mn></msub></mrow></semantics></math></inline-formula> is known to split <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> on a complex basis into left and right chiral (semi)spinors, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">P</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>i</mi><msub><mi>ω</mi><mn>6</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is interpreted as the projector on the 16-dimensional <i>particle subspace</i> (which annihilates the antiparticles).The standard model gauge group appears as the subgroup of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>G</mi><mrow><mi>PS</mi></mrow></msub></semantics></math></inline-formula> that preserves the sterile neutrino (which is identified with the Fock vacuum). The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mn>2</mn></msub></semantics></math></inline-formula>-graded internal space algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">A</mi></semantics></math></inline-formula> is then included in the projected tensor product <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">A</mi><mo>⊂</mo><mi mathvariant="script">P</mi><mi>C</mi><msub><mo>ℓ</mo><mn>10</mn></msub><mi mathvariant="script">P</mi><mo>=</mo><mi>C</mi><msub><mo>ℓ</mo><mn>4</mn></msub><mo>⊗</mo><mi>C</mi><msubsup><mo>ℓ</mo><mn>6</mn><mn>0</mn></msubsup></mrow></semantics></math></inline-formula>. The Higgs field appears as the scalar term of a superconnection, an element of the odd part <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msubsup><mo>ℓ</mo><mn>4</mn><mn>1</mn></msubsup></mrow></semantics></math></inline-formula> of the first factor. The fact that the projection of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mo>ℓ</mo><mn>10</mn></msub></mrow></semantics></math></inline-formula> only involves the even part <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msubsup><mo>ℓ</mo><mn>6</mn><mn>0</mn></msubsup></mrow></semantics></math></inline-formula> of the second factor guarantees that the color symmetry remains unbroken. As an application, we express the ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><msub><mi>m</mi><mi>H</mi></msub><msub><mi>m</mi><mi>W</mi></msub></mfrac></semantics></math></inline-formula> of the Higgs to the <i>W</i> boson masses in terms of the cosine of the <i>theoretical</i> Weinberg angle.
first_indexed 2024-03-11T03:15:35Z
format Article
id doaj.art-95502810f42a4dd39eb06771d821abaa
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-11T03:15:35Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-95502810f42a4dd39eb06771d821abaa2023-11-18T03:34:52ZengMDPI AGUniverse2218-19972023-05-019522210.3390/universe9050222Octonion Internal Space Algebra for the Standard ModelIvan Todorov0Institut des Hautes Études Scientifiques, 35 Route de Chartres, 91440 Bures-sur-Yvette, FranceThis paper surveys recent progress in our search for an appropriate internal space algebra for the standard model (SM) of particle physics. After a brief review of the existing approaches, we start with the Clifford algebras involving operators of left multiplication by octonions. A central role is played by a distinguished complex structure that implements the splitting of the octonions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">O</mi><mo>=</mo><mi mathvariant="double-struck">C</mi><mo>⊕</mo><msup><mrow><mi mathvariant="double-struck">C</mi></mrow><mn>3</mn></msup></mrow></semantics></math></inline-formula>, which reflect the lepton-quark symmetry. Such a complex structure on the 32-dimensional space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mo>ℓ</mo><mn>10</mn></msub></mrow></semantics></math></inline-formula> Majorana spinors is generated by the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mo>ℓ</mo><mn>6</mn></msub><mrow><mo>(</mo><mo>⊂</mo><mi>C</mi><msub><mo>ℓ</mo><mn>10</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> volume form, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mn>6</mn></msub><mo>=</mo><msub><mi>γ</mi><mn>1</mn></msub><mo>⋯</mo><msub><mi>γ</mi><mn>6</mn></msub></mrow></semantics></math></inline-formula>, and is left invariant by the Pati–Salam subgroup of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>p</mi><mi>i</mi><mi>n</mi><mo>(</mo><mn>10</mn><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>G</mi><mrow><mi>PS</mi></mrow></msub><mo>=</mo><mi>S</mi><mi>p</mi><mi>i</mi><mi>n</mi><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mo>×</mo><mi>S</mi><mi>p</mi><mi>i</mi><mi>n</mi><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow><mo>/</mo><msub><mi mathvariant="double-struck">Z</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>. While the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>p</mi><mi>i</mi><mi>n</mi><mo>(</mo><mn>10</mn><mo>)</mo></mrow></semantics></math></inline-formula> invariant volume form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mn>10</mn></msub><mo>=</mo><msub><mi>γ</mi><mn>1</mn></msub><mo>…</mo><msub><mi>γ</mi><mn>10</mn></msub></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mo>ℓ</mo><mn>10</mn></msub></mrow></semantics></math></inline-formula> is known to split <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> on a complex basis into left and right chiral (semi)spinors, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">P</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>i</mi><msub><mi>ω</mi><mn>6</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is interpreted as the projector on the 16-dimensional <i>particle subspace</i> (which annihilates the antiparticles).The standard model gauge group appears as the subgroup of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>G</mi><mrow><mi>PS</mi></mrow></msub></semantics></math></inline-formula> that preserves the sterile neutrino (which is identified with the Fock vacuum). The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mn>2</mn></msub></semantics></math></inline-formula>-graded internal space algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">A</mi></semantics></math></inline-formula> is then included in the projected tensor product <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">A</mi><mo>⊂</mo><mi mathvariant="script">P</mi><mi>C</mi><msub><mo>ℓ</mo><mn>10</mn></msub><mi mathvariant="script">P</mi><mo>=</mo><mi>C</mi><msub><mo>ℓ</mo><mn>4</mn></msub><mo>⊗</mo><mi>C</mi><msubsup><mo>ℓ</mo><mn>6</mn><mn>0</mn></msubsup></mrow></semantics></math></inline-formula>. The Higgs field appears as the scalar term of a superconnection, an element of the odd part <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msubsup><mo>ℓ</mo><mn>4</mn><mn>1</mn></msubsup></mrow></semantics></math></inline-formula> of the first factor. The fact that the projection of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mo>ℓ</mo><mn>10</mn></msub></mrow></semantics></math></inline-formula> only involves the even part <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msubsup><mo>ℓ</mo><mn>6</mn><mn>0</mn></msubsup></mrow></semantics></math></inline-formula> of the second factor guarantees that the color symmetry remains unbroken. As an application, we express the ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><msub><mi>m</mi><mi>H</mi></msub><msub><mi>m</mi><mi>W</mi></msub></mfrac></semantics></math></inline-formula> of the Higgs to the <i>W</i> boson masses in terms of the cosine of the <i>theoretical</i> Weinberg angle.https://www.mdpi.com/2218-1997/9/5/222Clifford algebracomposition algebratrialityJordan algebracomplex structuresuperselection rules
spellingShingle Ivan Todorov
Octonion Internal Space Algebra for the Standard Model
Universe
Clifford algebra
composition algebra
triality
Jordan algebra
complex structure
superselection rules
title Octonion Internal Space Algebra for the Standard Model
title_full Octonion Internal Space Algebra for the Standard Model
title_fullStr Octonion Internal Space Algebra for the Standard Model
title_full_unstemmed Octonion Internal Space Algebra for the Standard Model
title_short Octonion Internal Space Algebra for the Standard Model
title_sort octonion internal space algebra for the standard model
topic Clifford algebra
composition algebra
triality
Jordan algebra
complex structure
superselection rules
url https://www.mdpi.com/2218-1997/9/5/222
work_keys_str_mv AT ivantodorov octonioninternalspacealgebraforthestandardmodel