Resveratrol-Encapsulated Mitochondria-Targeting Liposome Enhances Mitochondrial Respiratory Capacity in Myocardial Cells

The development of drug delivery systems for use in the treatment of cardiovascular diseases is an area of great interest. We report herein on an evaluation of the therapeutic potential of a myocardial mitochondria-targeting liposome, a multifunctional envelope-type nano device for targeting pancrea...

Full description

Bibliographic Details
Main Authors: Takao Tsujioka, Daisuke Sasaki, Atsuhito Takeda, Hideyoshi Harashima, Yuma Yamada
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/23/1/112
Description
Summary:The development of drug delivery systems for use in the treatment of cardiovascular diseases is an area of great interest. We report herein on an evaluation of the therapeutic potential of a myocardial mitochondria-targeting liposome, a multifunctional envelope-type nano device for targeting pancreatic β cells (β-MEND) that was previously developed in our laboratory. Resveratrol (RES), a natural polyphenol compound that has a cardioprotective effect, was encapsulated in the β-MEND (β-MEND (RES)), and its efficacy was evaluated using rat myocardioblasts (H9c2 cells). The β-MEND (RES) was readily taken up by H9c2 cells, as verified by fluorescence-activated cell sorter data, and was observed to be colocalized with intracellular mitochondria by confocal laser scanning microscopy. Myocardial mitochondrial function was evaluated by a Seahorse XF Analyzer and the results showed that the β-MEND (RES) significantly activated cellular maximal respiratory capacity. In addition, the β-MEND (RES) showed no cellular toxicity for H9c2 cells as evidenced by Premix WST-1 assays. This is the first report of the use of a myocardial mitochondria-targeting liposome encapsulating RES for activating mitochondrial function, which was clearly confirmed based on analyses using a Seahorse XF Analyzer.
ISSN:1661-6596
1422-0067