Embodied crop calories in animal products
Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These co...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2013-01-01
|
Series: | Environmental Research Letters |
Subjects: | |
Online Access: | https://doi.org/10.1088/1748-9326/8/4/044044 |
_version_ | 1797748074855006208 |
---|---|
author | Prajal Pradhan Matthias K B Lüdeke Dominik E Reusser Jürgen P Kropp |
author_facet | Prajal Pradhan Matthias K B Lüdeke Dominik E Reusser Jürgen P Kropp |
author_sort | Prajal Pradhan |
collection | DOAJ |
description | Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock ) and about 4 kcal of crop products are used to generate 1 kcal of animal products ( embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8–2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on these regions. |
first_indexed | 2024-03-12T15:59:46Z |
format | Article |
id | doaj.art-9552eab6a7344010aeff14415f31c3a8 |
institution | Directory Open Access Journal |
issn | 1748-9326 |
language | English |
last_indexed | 2024-03-12T15:59:46Z |
publishDate | 2013-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | Environmental Research Letters |
spelling | doaj.art-9552eab6a7344010aeff14415f31c3a82023-08-09T14:41:24ZengIOP PublishingEnvironmental Research Letters1748-93262013-01-018404404410.1088/1748-9326/8/4/044044Embodied crop calories in animal productsPrajal Pradhan0Matthias K B Lüdeke1Dominik E Reusser2Jürgen P Kropp3Potsdam Institute for Climate Impact Research , Potsdam, GermanyPotsdam Institute for Climate Impact Research , Potsdam, GermanyPotsdam Institute for Climate Impact Research , Potsdam, GermanyPotsdam Institute for Climate Impact Research , Potsdam, Germany; Department of Geo- and Environmental Sciences, University of Potsdam , Potsdam, GermanyIncreases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock ) and about 4 kcal of crop products are used to generate 1 kcal of animal products ( embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8–2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on these regions.https://doi.org/10.1088/1748-9326/8/4/044044crop productsanimal caloriesdietary patternslivestock feedgridded data |
spellingShingle | Prajal Pradhan Matthias K B Lüdeke Dominik E Reusser Jürgen P Kropp Embodied crop calories in animal products Environmental Research Letters crop products animal calories dietary patterns livestock feed gridded data |
title | Embodied crop calories in animal products |
title_full | Embodied crop calories in animal products |
title_fullStr | Embodied crop calories in animal products |
title_full_unstemmed | Embodied crop calories in animal products |
title_short | Embodied crop calories in animal products |
title_sort | embodied crop calories in animal products |
topic | crop products animal calories dietary patterns livestock feed gridded data |
url | https://doi.org/10.1088/1748-9326/8/4/044044 |
work_keys_str_mv | AT prajalpradhan embodiedcropcaloriesinanimalproducts AT matthiaskbludeke embodiedcropcaloriesinanimalproducts AT dominikereusser embodiedcropcaloriesinanimalproducts AT jurgenpkropp embodiedcropcaloriesinanimalproducts |