Reduced expression of a rhomboid protease, EhROM1, correlates with changes in the submembrane distribution and size of the Gal/GalNAc lectin subunits in the human protozoan parasite, Entamoeba histolytica.

Entamoeba histolytica is a food- and waterborne parasite that causes amebic dysentery and amoebic liver abscesses. Adhesion is one of the most important virulence functions as it facilitates motility, colonization of host, destruction of host tissue, and uptake of nutrients by the parasite. The para...

Full description

Bibliographic Details
Main Authors: Brenda H Welter, Heather A Walters, Lesly A Temesvari
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0219870
_version_ 1818366325084389376
author Brenda H Welter
Heather A Walters
Lesly A Temesvari
author_facet Brenda H Welter
Heather A Walters
Lesly A Temesvari
author_sort Brenda H Welter
collection DOAJ
description Entamoeba histolytica is a food- and waterborne parasite that causes amebic dysentery and amoebic liver abscesses. Adhesion is one of the most important virulence functions as it facilitates motility, colonization of host, destruction of host tissue, and uptake of nutrients by the parasite. The parasite cell surface adhesin, the Gal/GalNAc lectin, facilitates parasite-host interaction by binding to galactose or N-acetylgalactosamine residues on host components. It is composed of heavy (Hgl), intermediate (Igl), and light (Lgl) subunits. Igl is constitutively localized to lipid rafts (cholesterol-rich membrane domains), whereas Hgl and Lgl transiently associate with rafts. When all three subunits are localized to rafts, galactose-sensitive adhesion is enhanced. Thus, submembrane location may regulate the function of this adhesion. Rhomboid proteases are a conserved family of intramembrane proteases that also participate in the regulation of parasite-host interactions. In E. histolytica, one rhomboid protease, EhROM1, cleaves Hgl as a substrate, and knockdown of its expression inhibits parasite-host interactions. Since rhomboid proteases are found within membranes, it is not surprising that lipid composition regulates their activity and enzyme-substrate binding. Given the importance of the lipid environment for both rhomboid proteases and the Gal/GalNAc lectin, we sought to gain insight into the relationship between rhomboid proteases and submembrane location of the lectin in E. histolytica. We demonstrated that EhROM1, itself, is enriched in highly buoyant triton-insoluble membranes reminiscent of rafts. Reducing rhomboid protease activity, either pharmacologically or genetically, correlated with an enrichment of Hgl and Lgl in rafts. In a mutant cell line with reduced EhROM1 expression, there was also a significant augmentation of the level of all three Gal/GalNAc subunits on the cell surface and an increase in the molecular weight of Hgl and Lgl. Overall, the study provides insight into the molecular mechanisms governing parasite-host adhesion for this pathogen.
first_indexed 2024-12-13T22:34:22Z
format Article
id doaj.art-957bcfac1b4f4086b663553761071a5d
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-13T22:34:22Z
publishDate 2020-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-957bcfac1b4f4086b663553761071a5d2022-12-21T23:29:01ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-01153e021987010.1371/journal.pone.0219870Reduced expression of a rhomboid protease, EhROM1, correlates with changes in the submembrane distribution and size of the Gal/GalNAc lectin subunits in the human protozoan parasite, Entamoeba histolytica.Brenda H WelterHeather A WaltersLesly A TemesvariEntamoeba histolytica is a food- and waterborne parasite that causes amebic dysentery and amoebic liver abscesses. Adhesion is one of the most important virulence functions as it facilitates motility, colonization of host, destruction of host tissue, and uptake of nutrients by the parasite. The parasite cell surface adhesin, the Gal/GalNAc lectin, facilitates parasite-host interaction by binding to galactose or N-acetylgalactosamine residues on host components. It is composed of heavy (Hgl), intermediate (Igl), and light (Lgl) subunits. Igl is constitutively localized to lipid rafts (cholesterol-rich membrane domains), whereas Hgl and Lgl transiently associate with rafts. When all three subunits are localized to rafts, galactose-sensitive adhesion is enhanced. Thus, submembrane location may regulate the function of this adhesion. Rhomboid proteases are a conserved family of intramembrane proteases that also participate in the regulation of parasite-host interactions. In E. histolytica, one rhomboid protease, EhROM1, cleaves Hgl as a substrate, and knockdown of its expression inhibits parasite-host interactions. Since rhomboid proteases are found within membranes, it is not surprising that lipid composition regulates their activity and enzyme-substrate binding. Given the importance of the lipid environment for both rhomboid proteases and the Gal/GalNAc lectin, we sought to gain insight into the relationship between rhomboid proteases and submembrane location of the lectin in E. histolytica. We demonstrated that EhROM1, itself, is enriched in highly buoyant triton-insoluble membranes reminiscent of rafts. Reducing rhomboid protease activity, either pharmacologically or genetically, correlated with an enrichment of Hgl and Lgl in rafts. In a mutant cell line with reduced EhROM1 expression, there was also a significant augmentation of the level of all three Gal/GalNAc subunits on the cell surface and an increase in the molecular weight of Hgl and Lgl. Overall, the study provides insight into the molecular mechanisms governing parasite-host adhesion for this pathogen.https://doi.org/10.1371/journal.pone.0219870
spellingShingle Brenda H Welter
Heather A Walters
Lesly A Temesvari
Reduced expression of a rhomboid protease, EhROM1, correlates with changes in the submembrane distribution and size of the Gal/GalNAc lectin subunits in the human protozoan parasite, Entamoeba histolytica.
PLoS ONE
title Reduced expression of a rhomboid protease, EhROM1, correlates with changes in the submembrane distribution and size of the Gal/GalNAc lectin subunits in the human protozoan parasite, Entamoeba histolytica.
title_full Reduced expression of a rhomboid protease, EhROM1, correlates with changes in the submembrane distribution and size of the Gal/GalNAc lectin subunits in the human protozoan parasite, Entamoeba histolytica.
title_fullStr Reduced expression of a rhomboid protease, EhROM1, correlates with changes in the submembrane distribution and size of the Gal/GalNAc lectin subunits in the human protozoan parasite, Entamoeba histolytica.
title_full_unstemmed Reduced expression of a rhomboid protease, EhROM1, correlates with changes in the submembrane distribution and size of the Gal/GalNAc lectin subunits in the human protozoan parasite, Entamoeba histolytica.
title_short Reduced expression of a rhomboid protease, EhROM1, correlates with changes in the submembrane distribution and size of the Gal/GalNAc lectin subunits in the human protozoan parasite, Entamoeba histolytica.
title_sort reduced expression of a rhomboid protease ehrom1 correlates with changes in the submembrane distribution and size of the gal galnac lectin subunits in the human protozoan parasite entamoeba histolytica
url https://doi.org/10.1371/journal.pone.0219870
work_keys_str_mv AT brendahwelter reducedexpressionofarhomboidproteaseehrom1correlateswithchangesinthesubmembranedistributionandsizeofthegalgalnaclectinsubunitsinthehumanprotozoanparasiteentamoebahistolytica
AT heatherawalters reducedexpressionofarhomboidproteaseehrom1correlateswithchangesinthesubmembranedistributionandsizeofthegalgalnaclectinsubunitsinthehumanprotozoanparasiteentamoebahistolytica
AT leslyatemesvari reducedexpressionofarhomboidproteaseehrom1correlateswithchangesinthesubmembranedistributionandsizeofthegalgalnaclectinsubunitsinthehumanprotozoanparasiteentamoebahistolytica