Summary: | The Ocean Color—Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) is a robust data processing platform utilizing scientific machine learning (SciML) in conjunction with comprehensive radiative transfer computations to provide accurate remote sensing reflectances (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mi>rs</mi></msub></semantics></math></inline-formula> estimates), aerosol optical depths, and inherent optical properties. This paper expands the capability of OC-SMART by quantifying uncertainties in ocean color retrievals. Bayesian inversion is used to relate measured top of atmosphere radiances and <i>a priori</i> data to estimate posterior probability density functions and associated uncertainties. A framework of the methodology and implementation strategy is presented and uncertainty estimates for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mi>rs</mi></msub></semantics></math></inline-formula> retrievals are provided to demonstrate the approach by applying it to MODIS, OLCI Sentinel-3, and VIIRS sensor data.
|