Quantifying Uncertainties in OC-SMART Ocean Color Retrievals: A Bayesian Inversion Algorithm

The Ocean Color—Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) is a robust data processing platform utilizing scientific machine learning (SciML) in conjunction with comprehensive radiative transfer computations to provide accurate remote sensing reflectances (<inline-formula><ma...

Full description

Bibliographic Details
Main Authors: Elliot Pachniak, Yongzhen Fan, Wei Li, Knut Stamnes
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/16/6/301
Description
Summary:The Ocean Color—Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) is a robust data processing platform utilizing scientific machine learning (SciML) in conjunction with comprehensive radiative transfer computations to provide accurate remote sensing reflectances (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mi>rs</mi></msub></semantics></math></inline-formula> estimates), aerosol optical depths, and inherent optical properties. This paper expands the capability of OC-SMART by quantifying uncertainties in ocean color retrievals. Bayesian inversion is used to relate measured top of atmosphere radiances and <i>a priori</i> data to estimate posterior probability density functions and associated uncertainties. A framework of the methodology and implementation strategy is presented and uncertainty estimates for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mi>rs</mi></msub></semantics></math></inline-formula> retrievals are provided to demonstrate the approach by applying it to MODIS, OLCI Sentinel-3, and VIIRS sensor data.
ISSN:1999-4893