Target tracking approach via quantum genetic algorithm

Aiming at an efficient feature match and similarity search in visual tracking, this study proposes a tracking algorithm based on quantum genetic algorithm. Therein, the global optimisation ability of quantum genetic algorithm is utilised. In the framework of quantum genetic algorithm, the positions...

Full description

Bibliographic Details
Main Authors: Zefenfen Jin, Zhiqiang Hou, Wangsheng Yu, Xin Wang
Format: Article
Language:English
Published: Wiley 2018-04-01
Series:IET Computer Vision
Subjects:
Online Access:https://doi.org/10.1049/iet-cvi.2017.0176
Description
Summary:Aiming at an efficient feature match and similarity search in visual tracking, this study proposes a tracking algorithm based on quantum genetic algorithm. Therein, the global optimisation ability of quantum genetic algorithm is utilised. In the framework of quantum genetic algorithm, the positions of pixels are taken as individuals in population, while scale‐invariant feature transform and colour features are taken as target model. Via defining the objective function, individual's fitness values can be measured. Visual tracking is realised when the pixel point with the biggest fitness value is searched and its corresponding position is returned. The experiment results show that the tracking algorithm the authors proposed performs more efficiently when it is compared with the state‐of‐the‐art tracking algorithms.
ISSN:1751-9632
1751-9640