Low-Complexity Joint Angle of Arrival and Time of Arrival Estimation of Multipath Signal in UWB System

In an ultra-wideband (UWB) system, the two-dimensional (2D) multiple signal classification (MUSIC) algorithms based on high-precision 2D spectral peak search can jointly estimate the time of arrival (TOA) and angle of arrival (AOA). However, the computational complexity of 2D-MUSIC is very high, and...

Full description

Bibliographic Details
Main Authors: Weiming Deng, Jianfeng Li, Yawei Tang, Xiaofei Zhang
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/14/6363
Description
Summary:In an ultra-wideband (UWB) system, the two-dimensional (2D) multiple signal classification (MUSIC) algorithms based on high-precision 2D spectral peak search can jointly estimate the time of arrival (TOA) and angle of arrival (AOA). However, the computational complexity of 2D-MUSIC is very high, and the corresponding data model is only based on the dual antennas. To solve these problems, a low-complexity algorithm for joint AOA and TOA estimation of the multipath ultra-wideband signal is proposed. Firstly, the dual antenna sensing data model is extended to the antenna array case. Then, based on the array-sensing data model, the proposed algorithm transforms the 2D spectral peak search of 2D-MUSIC into a secondary optimization problem to extract the estimation of AOA via only 1D search. Finally, the acquired AOA estimations are brought back, and the TOA estimations are also obtained through a 1D search. Moreover, in the case of an unknown transmitted signal waveform, the proposed method can still distinguish the main path signal based on the time difference of arrival of different paths, which shows wider applications. The simulation results show that the proposed algorithm outperforms the Root-MUSIC algorithm and the estimation of signal parameters using the rotational invariance techniques (ESPRIT) algorithm, and keeps the same estimation accuracy but with greatly reduced computational complexity compared to the 2D-MUSIC algorithm.
ISSN:1424-8220