Compact Binary Merger Rate in Dark-matter Spikes

Today, the existence of supermassive black holes (SMBHs) in the center of galactic halos is almost confirmed. An extremely dense region referred to as dark-matter spike is expected to form around central SMBHs as they grow and evolve adiabatically. In this work, we calculate the merger rate of compa...

Full description

Bibliographic Details
Main Authors: Saeed Fakhry, Zahra Salehnia, Azin Shirmohammadi, Mina Ghodsi Yengejeh, Javad T. Firouzjaee
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/acc1dd
Description
Summary:Today, the existence of supermassive black holes (SMBHs) in the center of galactic halos is almost confirmed. An extremely dense region referred to as dark-matter spike is expected to form around central SMBHs as they grow and evolve adiabatically. In this work, we calculate the merger rate of compact binaries in dark-matter spikes while considering halo models with spherical and ellipsoidal collapses. Our findings exhibit that ellipsoidal-collapse dark-matter halo models can potentially yield the enhancement of the merger rate of compact binaries. Finally, our results confirm that the merger rate of primordial black hole binaries is consistent with the results estimated by the LIGO-Virgo detectors, while such results cannot be realized for binary neutron stars and primordial black hole-neutron star binaries.
ISSN:1538-4357