The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.

Bibliographic Details
Main Author: F. Anthony Greco
Format: Article
Language:English
Published: Elsevier 2021-08-01
Series:Translational Oncology
Online Access:http://www.sciencedirect.com/science/article/pii/S193652332100084X
_version_ 1819064565765242880
author F. Anthony Greco
author_facet F. Anthony Greco
author_sort F. Anthony Greco
collection DOAJ
first_indexed 2024-12-21T15:32:36Z
format Article
id doaj.art-95b4a5517dcd40b3bc1aadd4ba07c53f
institution Directory Open Access Journal
issn 1936-5233
language English
last_indexed 2024-12-21T15:32:36Z
publishDate 2021-08-01
publisher Elsevier
record_format Article
series Translational Oncology
spelling doaj.art-95b4a5517dcd40b3bc1aadd4ba07c53f2022-12-21T18:58:44ZengElsevierTranslational Oncology1936-52332021-08-01148101092The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.F. Anthony Greco0Sarah Cannon Research Institute, Nashville, TN, 32703, USA; Tennessee Oncology, Nashville, TN, 32703, USA; Corresponding author. 250 25th Ave N, Nashville, TN, 32703, Phone +1 (615-289-3057), Fax +1 (615-320-1225).http://www.sciencedirect.com/science/article/pii/S193652332100084X
spellingShingle F. Anthony Greco
The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.
Translational Oncology
title The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.
title_full The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.
title_fullStr The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.
title_full_unstemmed The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.
title_short The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.
title_sort need for validation of mi gpsai in patients with cup comment on machine learning analysis using 77 044 genomic and transcriptomic profiles to accurately predict tumor type by j abraham et al
url http://www.sciencedirect.com/science/article/pii/S193652332100084X
work_keys_str_mv AT fanthonygreco theneedforvalidationofmigpsaiinpatientswithcupcommentonmachinelearninganalysisusing77044genomicandtranscriptomicprofilestoaccuratelypredicttumortypebyjabrahametal
AT fanthonygreco needforvalidationofmigpsaiinpatientswithcupcommentonmachinelearninganalysisusing77044genomicandtranscriptomicprofilestoaccuratelypredicttumortypebyjabrahametal