Summary: | Agricultural land use leads to changes in physical and chemical characteristics of sediment that influence macroinvertebrate community diversity and abundance in streams. To the best of our knowledge the joint influence of sediment’s physical and chemical characteristics on stream macroinvertebrates has not been assessed. We measured sediment’s physical and chemical characteristics and sampled macroinvertebrates in eight agricultural headwater streams in Indiana, Michigan, and Ohio, United States, in 2017 and 2018 to determine the physical and chemical conditions of the sediment, to evaluate the relationships between physical and chemical characteristics of the sediment, and the relationship of macroinvertebrate communities with the sediment’s physical and chemical characteristics. Sediments within most sites were dominated by sand or silt. pH was suitable for macroinvertebrates and nitrate, herbicide, and trace metal concentrations were below concentration levels anticipated to affect macroinvertebrate survival. Linear mixed effect model analysis results indicated that a physical gradient of percent small gravel and percent silt was positively correlated (<i>p</i> < 0.05) with a chemical gradient of potassium concentrations, magnesium concentrations, and percent total nitrogen in the sediments. Our linear mixed effect model analysis results also indicated that Invertebrate Community Index scores were negatively correlated (<i>p</i> < 0.05) with a chemical gradient of simazine and calcium concentrations and were negatively correlated (<i>p</i> < 0.05) with physical gradient of grain size diversity and percent sand. Our results suggest that watershed management plans need to address physical and chemical degradation of sediment to improve macroinvertebrate biotic integrity within agricultural headwater streams in the Midwestern United States.
|