A Survey of Spatio-Temporal Big Data Indexing Methods in Distributed Environment

With the widespread use of mobile and sensing devices, and the popularity of online map-based services, such as navigation services, the volume of spatio-temporal data is growing rapidly. Conventional big data technologies in existing distributed systems cannot effectively process spatio-temporal bi...

Full description

Bibliographic Details
Main Authors: Ruijie Tian, Huawei Zhai, Weishi Zhang, Fei Wang, Yao Guan
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9779567/
Description
Summary:With the widespread use of mobile and sensing devices, and the popularity of online map-based services, such as navigation services, the volume of spatio-temporal data is growing rapidly. Conventional big data technologies in existing distributed systems cannot effectively process spatio-temporal big data with temporal continuity and spatial proximity. How to construct an effective index for the application requirements of spatio-temporal data in a distributed environment has become one of the hotspots of spatio-temporal big data research. Many spatio-temporal indexing methods have been proposed to support efficient query processing of spatio-temporal data. In this article, the various spatio-temporal big data indexing methods proposed by domestic and foreign researchers from 2010 to 2020 are classified and summarized according to the distributed environment and application background, and the hot issues that need to be paid attention to in the future are proposed according to the changes in application requirements
ISSN:2151-1535