A Self-Tuned Method for Impedance-Matching of Planar-Loop Resonators in Conformable Wearables

Loop structure has been used as a single resonator and in meta-materials. Variations from the loop structures such as split-ring resonators have been utilized as sensing elements in integrated devices for wearable applications or in array configurations for free-space resonance. Previously, impedanc...

Full description

Bibliographic Details
Main Authors: Sen Bing, Khengdauliu Chawang, J.-C. Chiao
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/11/17/2784
Description
Summary:Loop structure has been used as a single resonator and in meta-materials. Variations from the loop structures such as split-ring resonators have been utilized as sensing elements in integrated devices for wearable applications or in array configurations for free-space resonance. Previously, impedance formula and equivalent circuit models have been developed for a single loop made of a conductor wire with a negligible wire diameter in the free space. Despite the features of being planar and small, however, the quality factors of single-loop resonators or antennas have not been sufficiently high to use them efficiently for sensing or power transfer. To investigate the limitation, we first experimentally examined the formula and equivalent circuits for a single loop made of planar metal sheets, along with finite element simulations. The loop performance factor was varied to validate the formula and equivalent circuits. Then a tuning element was utilized in the planar loop to improve resonance by providing distributed impedance-matching to the loop. The proposed tuning method was demonstrated with simulations and measurements. A new equivalent circuit model for the tuned loop resonator was established. Quality factors at resonance show significant improvement and the tuning can be done for a specific resonance order without changing the loop radius. It was also shown that the tuning method provided more robust performance for the resonator. The tuning mechanism is suitable for miniature planar device architectures in sensing applications, particularly for implants and wearables that have constraints in dimensions and form factors. The equivalent circuit model can also be applied for meta-materials in arrayed configurations.
ISSN:2079-9292