The Inequalities of Merris and Foregger for Permanents

Conjectures on permanents are well-known unsettled conjectures in linear algebra. Let <i>A</i> be an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo>...

Full description

Bibliographic Details
Main Authors: Divya K. Udayan, Kanagasabapathi Somasundaram
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/10/1782
_version_ 1797513145118359552
author Divya K. Udayan
Kanagasabapathi Somasundaram
author_facet Divya K. Udayan
Kanagasabapathi Somasundaram
author_sort Divya K. Udayan
collection DOAJ
description Conjectures on permanents are well-known unsettled conjectures in linear algebra. Let <i>A</i> be an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> matrix and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>n</mi></msub></semantics></math></inline-formula> be the symmetric group on <i>n</i> element set. The permanent of <i>A</i> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>per</mi><mi>A</mi><mo>=</mo><mstyle displaystyle="true"><munder><mo>∑</mo><mrow><mi>σ</mi><mo>∈</mo><msub><mi>S</mi><mi>n</mi></msub></mrow></munder></mstyle><mstyle displaystyle="true"><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover></mstyle><msub><mi>a</mi><mrow><mi>i</mi><mi>σ</mi><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msub><mo>.</mo></mrow></semantics></math></inline-formula> The Merris conjectured that for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> doubly stochastic matrices (denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">Ω</mi><mi>n</mi></msub></semantics></math></inline-formula>), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mi>per</mi><mi>A</mi><mo>≥</mo><mstyle displaystyle="true"><munder><mo movablelimits="false" form="prefix">min</mo><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi></mrow></munder></mstyle><mstyle displaystyle="true"><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover></mstyle><mi>per</mi><mi>A</mi><mrow><mo>(</mo><mi>j</mi><mo>|</mo><mi>i</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>(</mo><mi>j</mi><mo>|</mo><mi>i</mi><mo>)</mo></mrow></semantics></math></inline-formula> denotes the matrix obtained from <i>A</i> by deleting the <i>j</i>th row and <i>i</i>th column. Foregger raised a question whether <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>per</mi><mo>(</mo><mi>t</mi><msub><mi>J</mi><mi>n</mi></msub><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>t</mi><mo>)</mo></mrow><mi>A</mi><mo>)</mo><mo>≤</mo><mi>per</mi><mi>A</mi></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mfrac><mi>n</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></semantics></math></inline-formula> and for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>∈</mo><msub><mi mathvariant="sans-serif">Ω</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>J</mi><mi>n</mi></msub></semantics></math></inline-formula> is a doubly stochastic matrix with each entry <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><mn>1</mn><mi>n</mi></mfrac></semantics></math></inline-formula>. The Merris conjecture is one of the well-known conjectures on permanents. This conjecture is still open for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></semantics></math></inline-formula>. In this paper, we prove the Merris inequality for some classes of matrices. We use the sub permanent inequalities to prove our results. Foregger’s inequality is also one of the well-known inequalities on permanents, and it is not yet proved for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>5</mn></mrow></semantics></math></inline-formula>. Using the concepts of elementary symmetric function and subpermanents, we prove the Foregger’s inequality for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>5</mn></mrow></semantics></math></inline-formula> in [0.25, 0.6248]. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> be the sum of all subpermanents of order <i>k</i>. Holens and Dokovic proposed a conjecture (Holen–Dokovic conjecture), which states that if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>∈</mo><msub><mi mathvariant="sans-serif">Ω</mi><mi>n</mi></msub><mo>,</mo><mi>A</mi><mo>≠</mo><msub><mi>J</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> and <i>k</i> is an integer, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>,</mo></mrow></semantics></math></inline-formula> then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>≥</mo><mfrac><msup><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mrow><mi>n</mi><mi>k</mi></mrow></mfrac><msub><mi>σ</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. In this paper, we disprove the conjecture for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mi>k</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T06:10:35Z
format Article
id doaj.art-96032e4957c84eca8c1f6e9cba32246b
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T06:10:35Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-96032e4957c84eca8c1f6e9cba32246b2023-11-22T20:09:01ZengMDPI AGSymmetry2073-89942021-09-011310178210.3390/sym13101782The Inequalities of Merris and Foregger for PermanentsDivya K. Udayan0Kanagasabapathi Somasundaram1Department of Mathematics, Amrita School of Engineering, Amrita Vishwavidyapeetham, Coimbatore 641112, IndiaDepartment of Mathematics, Amrita School of Engineering, Amrita Vishwavidyapeetham, Coimbatore 641112, IndiaConjectures on permanents are well-known unsettled conjectures in linear algebra. Let <i>A</i> be an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> matrix and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>n</mi></msub></semantics></math></inline-formula> be the symmetric group on <i>n</i> element set. The permanent of <i>A</i> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>per</mi><mi>A</mi><mo>=</mo><mstyle displaystyle="true"><munder><mo>∑</mo><mrow><mi>σ</mi><mo>∈</mo><msub><mi>S</mi><mi>n</mi></msub></mrow></munder></mstyle><mstyle displaystyle="true"><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover></mstyle><msub><mi>a</mi><mrow><mi>i</mi><mi>σ</mi><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msub><mo>.</mo></mrow></semantics></math></inline-formula> The Merris conjectured that for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> doubly stochastic matrices (denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">Ω</mi><mi>n</mi></msub></semantics></math></inline-formula>), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mi>per</mi><mi>A</mi><mo>≥</mo><mstyle displaystyle="true"><munder><mo movablelimits="false" form="prefix">min</mo><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi></mrow></munder></mstyle><mstyle displaystyle="true"><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover></mstyle><mi>per</mi><mi>A</mi><mrow><mo>(</mo><mi>j</mi><mo>|</mo><mi>i</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>(</mo><mi>j</mi><mo>|</mo><mi>i</mi><mo>)</mo></mrow></semantics></math></inline-formula> denotes the matrix obtained from <i>A</i> by deleting the <i>j</i>th row and <i>i</i>th column. Foregger raised a question whether <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>per</mi><mo>(</mo><mi>t</mi><msub><mi>J</mi><mi>n</mi></msub><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>t</mi><mo>)</mo></mrow><mi>A</mi><mo>)</mo><mo>≤</mo><mi>per</mi><mi>A</mi></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mfrac><mi>n</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></semantics></math></inline-formula> and for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>∈</mo><msub><mi mathvariant="sans-serif">Ω</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>J</mi><mi>n</mi></msub></semantics></math></inline-formula> is a doubly stochastic matrix with each entry <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><mn>1</mn><mi>n</mi></mfrac></semantics></math></inline-formula>. The Merris conjecture is one of the well-known conjectures on permanents. This conjecture is still open for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></semantics></math></inline-formula>. In this paper, we prove the Merris inequality for some classes of matrices. We use the sub permanent inequalities to prove our results. Foregger’s inequality is also one of the well-known inequalities on permanents, and it is not yet proved for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>5</mn></mrow></semantics></math></inline-formula>. Using the concepts of elementary symmetric function and subpermanents, we prove the Foregger’s inequality for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>5</mn></mrow></semantics></math></inline-formula> in [0.25, 0.6248]. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> be the sum of all subpermanents of order <i>k</i>. Holens and Dokovic proposed a conjecture (Holen–Dokovic conjecture), which states that if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>∈</mo><msub><mi mathvariant="sans-serif">Ω</mi><mi>n</mi></msub><mo>,</mo><mi>A</mi><mo>≠</mo><msub><mi>J</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> and <i>k</i> is an integer, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>,</mo></mrow></semantics></math></inline-formula> then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>≥</mo><mfrac><msup><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mrow><mi>n</mi><mi>k</mi></mrow></mfrac><msub><mi>σ</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. In this paper, we disprove the conjecture for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mi>k</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2073-8994/13/10/1782doubly stochastic matricespermanentMerris conjectureForegger’s inequality
spellingShingle Divya K. Udayan
Kanagasabapathi Somasundaram
The Inequalities of Merris and Foregger for Permanents
Symmetry
doubly stochastic matrices
permanent
Merris conjecture
Foregger’s inequality
title The Inequalities of Merris and Foregger for Permanents
title_full The Inequalities of Merris and Foregger for Permanents
title_fullStr The Inequalities of Merris and Foregger for Permanents
title_full_unstemmed The Inequalities of Merris and Foregger for Permanents
title_short The Inequalities of Merris and Foregger for Permanents
title_sort inequalities of merris and foregger for permanents
topic doubly stochastic matrices
permanent
Merris conjecture
Foregger’s inequality
url https://www.mdpi.com/2073-8994/13/10/1782
work_keys_str_mv AT divyakudayan theinequalitiesofmerrisandforeggerforpermanents
AT kanagasabapathisomasundaram theinequalitiesofmerrisandforeggerforpermanents
AT divyakudayan inequalitiesofmerrisandforeggerforpermanents
AT kanagasabapathisomasundaram inequalitiesofmerrisandforeggerforpermanents