Ecological Stoichiometry beyond Redfield: An Ionomic Perspective on Elemental Homeostasis
Elemental homeostasis has been largely characterized using three important elements that were part of the Redfield ratio (i.e., carbon: nitrogen: phosphorus). These efforts have revealed substantial diversity in homeostasis among taxonomic groups and even within populations. Understanding the evolut...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2017-04-01
|
Series: | Frontiers in Microbiology |
Subjects: | |
Online Access: | http://journal.frontiersin.org/article/10.3389/fmicb.2017.00722/full |
_version_ | 1819092247180738560 |
---|---|
author | Punidan D. Jeyasingh Jared M. Goos Seth K. Thompson Casey M. Godwin James B. Cotner |
author_facet | Punidan D. Jeyasingh Jared M. Goos Seth K. Thompson Casey M. Godwin James B. Cotner |
author_sort | Punidan D. Jeyasingh |
collection | DOAJ |
description | Elemental homeostasis has been largely characterized using three important elements that were part of the Redfield ratio (i.e., carbon: nitrogen: phosphorus). These efforts have revealed substantial diversity in homeostasis among taxonomic groups and even within populations. Understanding the evolutionary basis, and ecological consequences of such diversity is a central challenge. Here, we propose that a more complete understanding of homeostasis necessitates the consideration of other elements beyond C, N, and P. Specifically, we posit that physiological complexity underlying maintenance of elemental homeostasis along a single elemental axis impacts processing of other elements, thus altering elemental homeostasis along other axes. Indeed, transcriptomic studies in a wide variety of organisms have found that individuals differentially express significant proportions of the genome in response to variability in supply stoichiometry in order to maintain varying levels of homeostasis. We review the literature from the emergent field of ionomics that has established the consequences of such physiological trade-offs on the content of the entire suite of elements in an individual. Further, we present experimental data on bacteria exhibiting divergent phosphorus homeostasis phenotypes demonstrating the fundamental interconnectedness among elemental quotas. These observations suggest that physiological adjustments can lead to unexpected patterns in biomass stoichiometry, such as correlated changes among suites of non-limiting microelements in response to limitation by macroelements. Including the entire suite of elements that comprise biomass will foster improved quantitative understanding of the links between chemical cycles and the physiology of organisms. |
first_indexed | 2024-12-21T22:52:35Z |
format | Article |
id | doaj.art-960c6da67c984d318404a7adf9694bb6 |
institution | Directory Open Access Journal |
issn | 1664-302X |
language | English |
last_indexed | 2024-12-21T22:52:35Z |
publishDate | 2017-04-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Microbiology |
spelling | doaj.art-960c6da67c984d318404a7adf9694bb62022-12-21T18:47:32ZengFrontiers Media S.A.Frontiers in Microbiology1664-302X2017-04-01810.3389/fmicb.2017.00722258351Ecological Stoichiometry beyond Redfield: An Ionomic Perspective on Elemental HomeostasisPunidan D. Jeyasingh0Jared M. Goos1Seth K. Thompson2Casey M. Godwin3James B. Cotner4Department of Integrative Biology, Oklahoma State UniversityStillwater, OK, USADepartment of Biology, University of Texas at ArlingtonArlington, TX, USAWater Resources Science Program, University of MinnesotaSt. Paul, MN, USASchool of Natural Resources and Environment, University of MichiganAnn Arbor, MI, USADepartment of Ecology, Evolution, and Behavior, University of MinnesotaSt. Paul, MN, USAElemental homeostasis has been largely characterized using three important elements that were part of the Redfield ratio (i.e., carbon: nitrogen: phosphorus). These efforts have revealed substantial diversity in homeostasis among taxonomic groups and even within populations. Understanding the evolutionary basis, and ecological consequences of such diversity is a central challenge. Here, we propose that a more complete understanding of homeostasis necessitates the consideration of other elements beyond C, N, and P. Specifically, we posit that physiological complexity underlying maintenance of elemental homeostasis along a single elemental axis impacts processing of other elements, thus altering elemental homeostasis along other axes. Indeed, transcriptomic studies in a wide variety of organisms have found that individuals differentially express significant proportions of the genome in response to variability in supply stoichiometry in order to maintain varying levels of homeostasis. We review the literature from the emergent field of ionomics that has established the consequences of such physiological trade-offs on the content of the entire suite of elements in an individual. Further, we present experimental data on bacteria exhibiting divergent phosphorus homeostasis phenotypes demonstrating the fundamental interconnectedness among elemental quotas. These observations suggest that physiological adjustments can lead to unexpected patterns in biomass stoichiometry, such as correlated changes among suites of non-limiting microelements in response to limitation by macroelements. Including the entire suite of elements that comprise biomass will foster improved quantitative understanding of the links between chemical cycles and the physiology of organisms.http://journal.frontiersin.org/article/10.3389/fmicb.2017.00722/fullelemental profilingfreshwater heterotrophic bacteriaionomeionomicsnutrient limitationphosphorus supply |
spellingShingle | Punidan D. Jeyasingh Jared M. Goos Seth K. Thompson Casey M. Godwin James B. Cotner Ecological Stoichiometry beyond Redfield: An Ionomic Perspective on Elemental Homeostasis Frontiers in Microbiology elemental profiling freshwater heterotrophic bacteria ionome ionomics nutrient limitation phosphorus supply |
title | Ecological Stoichiometry beyond Redfield: An Ionomic Perspective on Elemental Homeostasis |
title_full | Ecological Stoichiometry beyond Redfield: An Ionomic Perspective on Elemental Homeostasis |
title_fullStr | Ecological Stoichiometry beyond Redfield: An Ionomic Perspective on Elemental Homeostasis |
title_full_unstemmed | Ecological Stoichiometry beyond Redfield: An Ionomic Perspective on Elemental Homeostasis |
title_short | Ecological Stoichiometry beyond Redfield: An Ionomic Perspective on Elemental Homeostasis |
title_sort | ecological stoichiometry beyond redfield an ionomic perspective on elemental homeostasis |
topic | elemental profiling freshwater heterotrophic bacteria ionome ionomics nutrient limitation phosphorus supply |
url | http://journal.frontiersin.org/article/10.3389/fmicb.2017.00722/full |
work_keys_str_mv | AT punidandjeyasingh ecologicalstoichiometrybeyondredfieldanionomicperspectiveonelementalhomeostasis AT jaredmgoos ecologicalstoichiometrybeyondredfieldanionomicperspectiveonelementalhomeostasis AT sethkthompson ecologicalstoichiometrybeyondredfieldanionomicperspectiveonelementalhomeostasis AT caseymgodwin ecologicalstoichiometrybeyondredfieldanionomicperspectiveonelementalhomeostasis AT jamesbcotner ecologicalstoichiometrybeyondredfieldanionomicperspectiveonelementalhomeostasis |