The Least Squares Homotopy Perturbation Method for Systems of Differential Equations with Application to a Blood Flow Model

In this paper, least squares homotopy perturbation is presented as a straightforward and accurate method to compute approximate analytical solutions for systems of ordinary differential equations. The method is employed to solve a problem related to a laminar flow of a viscous fluid in a semi-porous...

Full description

Bibliographic Details
Main Authors: Mădălina Sofia Paşca, Olivia Bundău, Adina Juratoni, Bogdan Căruntu
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/4/546
Description
Summary:In this paper, least squares homotopy perturbation is presented as a straightforward and accurate method to compute approximate analytical solutions for systems of ordinary differential equations. The method is employed to solve a problem related to a laminar flow of a viscous fluid in a semi-porous channel, which may be used to model the blood flow through a blood vessel, taking into account the effects of a magnetic field. The numerical computations show that the method is both easy to use and very accurate compared to the other methods previously used to solve the given problem.
ISSN:2227-7390