Stancu-Type Generalized <i>q</i>-Bernstein–Kantorovich Operators Involving Bézier Bases

We construct the Stancu-type generalization of <i>q</i>-Bernstein operators involving the idea of Bézier bases depending on the shape parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow>&...

Full description

Bibliographic Details
Main Authors: Wen-Tao Cheng, Md Nasiruzzaman, Syed Abdul Mohiuddine
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/12/2057
_version_ 1797484691906887680
author Wen-Tao Cheng
Md Nasiruzzaman
Syed Abdul Mohiuddine
author_facet Wen-Tao Cheng
Md Nasiruzzaman
Syed Abdul Mohiuddine
author_sort Wen-Tao Cheng
collection DOAJ
description We construct the Stancu-type generalization of <i>q</i>-Bernstein operators involving the idea of Bézier bases depending on the shape parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>1</mn><mo>≤</mo><mi>ζ</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula> and obtain auxiliary lemmas. We discuss the local approximation results in term of a Lipschitz-type function based on two parameters and a Lipschitz-type maximal function, as well as other related results for our newly constructed operators. Moreover, we determine the rate of convergence of our operators by means of Peetre’s <i>K</i>-functional and corresponding modulus of continuity.
first_indexed 2024-03-09T23:08:58Z
format Article
id doaj.art-9631588543f54bf1bffedb53bf43e00a
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T23:08:58Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-9631588543f54bf1bffedb53bf43e00a2023-11-23T17:49:01ZengMDPI AGMathematics2227-73902022-06-011012205710.3390/math10122057Stancu-Type Generalized <i>q</i>-Bernstein–Kantorovich Operators Involving Bézier BasesWen-Tao Cheng0Md Nasiruzzaman1Syed Abdul Mohiuddine2School of Mathematics and Physics, Anqing Normal University, Anqing 246133, ChinaDepartment of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi ArabiaDepartment of General Required Courses, Mathematics, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Saudi ArabiaWe construct the Stancu-type generalization of <i>q</i>-Bernstein operators involving the idea of Bézier bases depending on the shape parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>1</mn><mo>≤</mo><mi>ζ</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula> and obtain auxiliary lemmas. We discuss the local approximation results in term of a Lipschitz-type function based on two parameters and a Lipschitz-type maximal function, as well as other related results for our newly constructed operators. Moreover, we determine the rate of convergence of our operators by means of Peetre’s <i>K</i>-functional and corresponding modulus of continuity.https://www.mdpi.com/2227-7390/10/12/2057(ζ,<i>q</i>)-Bernstein operatorsBézier basesuniform convergenceLipschitz-type functionsrate of convergence
spellingShingle Wen-Tao Cheng
Md Nasiruzzaman
Syed Abdul Mohiuddine
Stancu-Type Generalized <i>q</i>-Bernstein–Kantorovich Operators Involving Bézier Bases
Mathematics
(ζ,<i>q</i>)-Bernstein operators
Bézier bases
uniform convergence
Lipschitz-type functions
rate of convergence
title Stancu-Type Generalized <i>q</i>-Bernstein–Kantorovich Operators Involving Bézier Bases
title_full Stancu-Type Generalized <i>q</i>-Bernstein–Kantorovich Operators Involving Bézier Bases
title_fullStr Stancu-Type Generalized <i>q</i>-Bernstein–Kantorovich Operators Involving Bézier Bases
title_full_unstemmed Stancu-Type Generalized <i>q</i>-Bernstein–Kantorovich Operators Involving Bézier Bases
title_short Stancu-Type Generalized <i>q</i>-Bernstein–Kantorovich Operators Involving Bézier Bases
title_sort stancu type generalized i q i bernstein kantorovich operators involving bezier bases
topic (ζ,<i>q</i>)-Bernstein operators
Bézier bases
uniform convergence
Lipschitz-type functions
rate of convergence
url https://www.mdpi.com/2227-7390/10/12/2057
work_keys_str_mv AT wentaocheng stancutypegeneralizediqibernsteinkantorovichoperatorsinvolvingbezierbases
AT mdnasiruzzaman stancutypegeneralizediqibernsteinkantorovichoperatorsinvolvingbezierbases
AT syedabdulmohiuddine stancutypegeneralizediqibernsteinkantorovichoperatorsinvolvingbezierbases