Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium
In this article, the influence of thermal radiation on unsteady magnetohydrodynamics (MHD) free convection flow of rotating Jeffrey nanofluid passing through a porous medium is studied. The silver nanoparticles (AgNPs) are dispersed in the Kerosene Oil (KO) which is chosen as conventional base fluid...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2017-01-01
|
Series: | Results in Physics |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2211379716306106 |
_version_ | 1818061320101036032 |
---|---|
author | Nor Athirah Mohd Zin Ilyas Khan Sharidan Shafie Ali Saleh Alshomrani |
author_facet | Nor Athirah Mohd Zin Ilyas Khan Sharidan Shafie Ali Saleh Alshomrani |
author_sort | Nor Athirah Mohd Zin |
collection | DOAJ |
description | In this article, the influence of thermal radiation on unsteady magnetohydrodynamics (MHD) free convection flow of rotating Jeffrey nanofluid passing through a porous medium is studied. The silver nanoparticles (AgNPs) are dispersed in the Kerosene Oil (KO) which is chosen as conventional base fluid. Appropriate dimensionless variables are used and the system of equations is transformed into dimensionless form. The resulting problem is solved using the Laplace transform technique. The impact of pertinent parameters including volume fraction φ, material parameters of Jeffrey fluid λ1, λ, rotation parameter r, Hartmann number Ha, permeability parameter K, Grashof number Gr, Prandtl number Pr, radiation parameter Rd and dimensionless time t on velocity and temperature profiles are presented graphically with comprehensive discussions. It is observed that, the rotation parameter, due to the Coriolis force, tends to decrease the primary velocity but reverse effect is observed in the secondary velocity. It is also observed that, the Lorentz force retards the fluid flow for both primary and secondary velocities. The expressions for skin friction and Nusselt number are also evaluated for different values of emerging parameters. A comparative study with the existing published work is provided in order to verify the present results. An excellent agreement is found. Keywords: Jeffrey nanofluid, AgNPs, MHD and Porosity, Rotating flow, Laplace transform technique |
first_indexed | 2024-12-10T13:46:26Z |
format | Article |
id | doaj.art-96333afd3b9948b3b9d2ca2d19ecb37e |
institution | Directory Open Access Journal |
issn | 2211-3797 |
language | English |
last_indexed | 2024-12-10T13:46:26Z |
publishDate | 2017-01-01 |
publisher | Elsevier |
record_format | Article |
series | Results in Physics |
spelling | doaj.art-96333afd3b9948b3b9d2ca2d19ecb37e2022-12-22T01:46:25ZengElsevierResults in Physics2211-37972017-01-017288309Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous mediumNor Athirah Mohd Zin0Ilyas Khan1Sharidan Shafie2Ali Saleh Alshomrani3Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, MalaysiaBasic Sciences Department, College of Engineering Majmaah University, P.O. Box 66, Majmaah 11952, Saudi Arabia; Corresponding author.Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, MalaysiaDepartment of Mathematics, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi ArabiaIn this article, the influence of thermal radiation on unsteady magnetohydrodynamics (MHD) free convection flow of rotating Jeffrey nanofluid passing through a porous medium is studied. The silver nanoparticles (AgNPs) are dispersed in the Kerosene Oil (KO) which is chosen as conventional base fluid. Appropriate dimensionless variables are used and the system of equations is transformed into dimensionless form. The resulting problem is solved using the Laplace transform technique. The impact of pertinent parameters including volume fraction φ, material parameters of Jeffrey fluid λ1, λ, rotation parameter r, Hartmann number Ha, permeability parameter K, Grashof number Gr, Prandtl number Pr, radiation parameter Rd and dimensionless time t on velocity and temperature profiles are presented graphically with comprehensive discussions. It is observed that, the rotation parameter, due to the Coriolis force, tends to decrease the primary velocity but reverse effect is observed in the secondary velocity. It is also observed that, the Lorentz force retards the fluid flow for both primary and secondary velocities. The expressions for skin friction and Nusselt number are also evaluated for different values of emerging parameters. A comparative study with the existing published work is provided in order to verify the present results. An excellent agreement is found. Keywords: Jeffrey nanofluid, AgNPs, MHD and Porosity, Rotating flow, Laplace transform techniquehttp://www.sciencedirect.com/science/article/pii/S2211379716306106 |
spellingShingle | Nor Athirah Mohd Zin Ilyas Khan Sharidan Shafie Ali Saleh Alshomrani Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium Results in Physics |
title | Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium |
title_full | Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium |
title_fullStr | Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium |
title_full_unstemmed | Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium |
title_short | Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium |
title_sort | analysis of heat transfer for unsteady mhd free convection flow of rotating jeffrey nanofluid saturated in a porous medium |
url | http://www.sciencedirect.com/science/article/pii/S2211379716306106 |
work_keys_str_mv | AT norathirahmohdzin analysisofheattransferforunsteadymhdfreeconvectionflowofrotatingjeffreynanofluidsaturatedinaporousmedium AT ilyaskhan analysisofheattransferforunsteadymhdfreeconvectionflowofrotatingjeffreynanofluidsaturatedinaporousmedium AT sharidanshafie analysisofheattransferforunsteadymhdfreeconvectionflowofrotatingjeffreynanofluidsaturatedinaporousmedium AT alisalehalshomrani analysisofheattransferforunsteadymhdfreeconvectionflowofrotatingjeffreynanofluidsaturatedinaporousmedium |