There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with <i>n</i> Complete Light-Like Geodesics

In the present paper, we study conformal mappings between a connected <i>n</i>-dimension pseudo-Riemannian Einstein manifolds. Let <i>g</i> be a pseudo-Riemannian Einstein metric of indefinite signature on a connected <i>n</i>-dimensional manifold <i>M</i...

Full description

Bibliographic Details
Main Authors: Josef Mikeš, Irena Hinterleitner, Nadezda Guseva
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/9/801
_version_ 1818979948982960128
author Josef Mikeš
Irena Hinterleitner
Nadezda Guseva
author_facet Josef Mikeš
Irena Hinterleitner
Nadezda Guseva
author_sort Josef Mikeš
collection DOAJ
description In the present paper, we study conformal mappings between a connected <i>n</i>-dimension pseudo-Riemannian Einstein manifolds. Let <i>g</i> be a pseudo-Riemannian Einstein metric of indefinite signature on a connected <i>n</i>-dimensional manifold <i>M</i>. Further assume that there is a point at which not all sectional curvatures are equal and through which in linearly independent directions pass <i>n</i> complete null (light-like) geodesics. If, for the function <inline-formula> <math display="inline"> <semantics> <mi>&#968;</mi> </semantics> </math> </inline-formula> the metric <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>&#968;</mi> <mrow> <mo>&#8722;</mo> <mn>2</mn> </mrow> </msup> <mi>g</mi> </mrow> </semantics> </math> </inline-formula> is also Einstein, then <inline-formula> <math display="inline"> <semantics> <mi>&#968;</mi> </semantics> </math> </inline-formula> is a constant, and conformal mapping is homothetic. Note that Kiosak and Matveev previously assumed that all light-lines were complete. If the Einstein manifold is closed, the completeness assumption can be omitted (the latter result is due to Mike&#353; and K&#252;hnel).
first_indexed 2024-12-20T17:07:39Z
format Article
id doaj.art-963ddf61670e4e73b677539d238aca16
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-20T17:07:39Z
publishDate 2019-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-963ddf61670e4e73b677539d238aca162022-12-21T19:32:14ZengMDPI AGMathematics2227-73902019-09-017980110.3390/math7090801math7090801There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with <i>n</i> Complete Light-Like GeodesicsJosef Mikeš0Irena Hinterleitner1Nadezda Guseva2Department of Algebra and Geometry, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech RepublicDepartment of Mathematics, Faculty of Civil Engineering, Brno University of Technology, 60190 Brno, Czech RepublicDepartment of Geometry, Moscow Pedagogical State University, 1/1 M. Pirogovskaya Str., 119991 Moscow, RussianIn the present paper, we study conformal mappings between a connected <i>n</i>-dimension pseudo-Riemannian Einstein manifolds. Let <i>g</i> be a pseudo-Riemannian Einstein metric of indefinite signature on a connected <i>n</i>-dimensional manifold <i>M</i>. Further assume that there is a point at which not all sectional curvatures are equal and through which in linearly independent directions pass <i>n</i> complete null (light-like) geodesics. If, for the function <inline-formula> <math display="inline"> <semantics> <mi>&#968;</mi> </semantics> </math> </inline-formula> the metric <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>&#968;</mi> <mrow> <mo>&#8722;</mo> <mn>2</mn> </mrow> </msup> <mi>g</mi> </mrow> </semantics> </math> </inline-formula> is also Einstein, then <inline-formula> <math display="inline"> <semantics> <mi>&#968;</mi> </semantics> </math> </inline-formula> is a constant, and conformal mapping is homothetic. Note that Kiosak and Matveev previously assumed that all light-lines were complete. If the Einstein manifold is closed, the completeness assumption can be omitted (the latter result is due to Mike&#353; and K&#252;hnel).https://www.mdpi.com/2227-7390/7/9/801pseudo-Riemannian manifoldEinstein manifoldconcircular vector fieldconformal mappinglight-like geodesiccomplete geodesic
spellingShingle Josef Mikeš
Irena Hinterleitner
Nadezda Guseva
There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with <i>n</i> Complete Light-Like Geodesics
Mathematics
pseudo-Riemannian manifold
Einstein manifold
concircular vector field
conformal mapping
light-like geodesic
complete geodesic
title There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with <i>n</i> Complete Light-Like Geodesics
title_full There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with <i>n</i> Complete Light-Like Geodesics
title_fullStr There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with <i>n</i> Complete Light-Like Geodesics
title_full_unstemmed There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with <i>n</i> Complete Light-Like Geodesics
title_short There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with <i>n</i> Complete Light-Like Geodesics
title_sort there are no conformal einstein rescalings of pseudo riemannian einstein spaces with i n i complete light like geodesics
topic pseudo-Riemannian manifold
Einstein manifold
concircular vector field
conformal mapping
light-like geodesic
complete geodesic
url https://www.mdpi.com/2227-7390/7/9/801
work_keys_str_mv AT josefmikes therearenoconformaleinsteinrescalingsofpseudoriemannianeinsteinspaceswithinicompletelightlikegeodesics
AT irenahinterleitner therearenoconformaleinsteinrescalingsofpseudoriemannianeinsteinspaceswithinicompletelightlikegeodesics
AT nadezdaguseva therearenoconformaleinsteinrescalingsofpseudoriemannianeinsteinspaceswithinicompletelightlikegeodesics