Positive radial solutions for a noncooperative resonant nuclear reactor model with sign-changing nonlinearities

Abstract This paper is concerned with the existence of positive radial solutions of the following resonant elliptic system: { − Δ u = u v + f ( | x | , u ) , 0 < R 1 < | x | < R 2 , x ∈ R N , − Δ v = c g ( u ) − d v , 0 < R 1 < | x | < R 2 , x ∈ R N , ∂ u ∂ n = 0 = ∂ v ∂ n , | x |...

Full description

Bibliographic Details
Main Authors: Ruipeng Chen, Jiayin Liu, Guangchen Zhang, Xiangyu Kong
Format: Article
Language:English
Published: SpringerOpen 2021-04-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:https://doi.org/10.1186/s13660-021-02611-0
_version_ 1818590287305375744
author Ruipeng Chen
Jiayin Liu
Guangchen Zhang
Xiangyu Kong
author_facet Ruipeng Chen
Jiayin Liu
Guangchen Zhang
Xiangyu Kong
author_sort Ruipeng Chen
collection DOAJ
description Abstract This paper is concerned with the existence of positive radial solutions of the following resonant elliptic system: { − Δ u = u v + f ( | x | , u ) , 0 < R 1 < | x | < R 2 , x ∈ R N , − Δ v = c g ( u ) − d v , 0 < R 1 < | x | < R 2 , x ∈ R N , ∂ u ∂ n = 0 = ∂ v ∂ n , | x | = R 1 , | x | = R 2 , $$ \textstyle\begin{cases} -\Delta u=uv+f( \vert x \vert ,u), & 0< R_{1}< \vert x \vert < R_{2}, x\in \mathbb{R}^{N}, \\ -\Delta v=cg(u)-dv, & 0< R_{1}< \vert x \vert < R_{2}, x\in \mathbb{R}^{N}, \\ \frac{\partial u}{\partial \textbf{n}}=0= \frac{\partial v}{\partial \textbf{n}},& \vert x \vert =R_{1}, \vert x \vert =R_{2}, \end{cases} $$ where R N $\mathbb{R}^{N}$ ( N ≥ 1 $N\geq 1$ ) is the usual Euclidean space, n indicates the outward unit normal vector, f ∈ C ( [ R 1 , R 2 ] × [ 0 , ∞ ) , R ) $f\in C([R_{1},R_{2}]\times [0,\infty ),\mathbb{R})$ , g ∈ C ( [ 0 , ∞ ) , [ 0 , ∞ ) ) $g\in C([0,\infty ),[0,\infty ))$ , and c and d are positive constants. By employing the classical fixed point theory we establish several novel existence theorems. Our main findings enrich and complement those available in the literature.
first_indexed 2024-12-16T09:54:09Z
format Article
id doaj.art-96542ee2679945699b2e73065dc00f65
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-16T09:54:09Z
publishDate 2021-04-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-96542ee2679945699b2e73065dc00f652022-12-21T22:35:58ZengSpringerOpenJournal of Inequalities and Applications1029-242X2021-04-012021111110.1186/s13660-021-02611-0Positive radial solutions for a noncooperative resonant nuclear reactor model with sign-changing nonlinearitiesRuipeng Chen0Jiayin Liu1Guangchen Zhang2Xiangyu Kong3Department of Mathematics, North Minzu UniversityDepartment of Mathematics, North Minzu UniversityDepartment of Mathematics, North Minzu UniversityDepartment of Mathematics, North Minzu UniversityAbstract This paper is concerned with the existence of positive radial solutions of the following resonant elliptic system: { − Δ u = u v + f ( | x | , u ) , 0 < R 1 < | x | < R 2 , x ∈ R N , − Δ v = c g ( u ) − d v , 0 < R 1 < | x | < R 2 , x ∈ R N , ∂ u ∂ n = 0 = ∂ v ∂ n , | x | = R 1 , | x | = R 2 , $$ \textstyle\begin{cases} -\Delta u=uv+f( \vert x \vert ,u), & 0< R_{1}< \vert x \vert < R_{2}, x\in \mathbb{R}^{N}, \\ -\Delta v=cg(u)-dv, & 0< R_{1}< \vert x \vert < R_{2}, x\in \mathbb{R}^{N}, \\ \frac{\partial u}{\partial \textbf{n}}=0= \frac{\partial v}{\partial \textbf{n}},& \vert x \vert =R_{1}, \vert x \vert =R_{2}, \end{cases} $$ where R N $\mathbb{R}^{N}$ ( N ≥ 1 $N\geq 1$ ) is the usual Euclidean space, n indicates the outward unit normal vector, f ∈ C ( [ R 1 , R 2 ] × [ 0 , ∞ ) , R ) $f\in C([R_{1},R_{2}]\times [0,\infty ),\mathbb{R})$ , g ∈ C ( [ 0 , ∞ ) , [ 0 , ∞ ) ) $g\in C([0,\infty ),[0,\infty ))$ , and c and d are positive constants. By employing the classical fixed point theory we establish several novel existence theorems. Our main findings enrich and complement those available in the literature.https://doi.org/10.1186/s13660-021-02611-0Noncooperative modelsRadial solutionsResonanceExistenceFixed point
spellingShingle Ruipeng Chen
Jiayin Liu
Guangchen Zhang
Xiangyu Kong
Positive radial solutions for a noncooperative resonant nuclear reactor model with sign-changing nonlinearities
Journal of Inequalities and Applications
Noncooperative models
Radial solutions
Resonance
Existence
Fixed point
title Positive radial solutions for a noncooperative resonant nuclear reactor model with sign-changing nonlinearities
title_full Positive radial solutions for a noncooperative resonant nuclear reactor model with sign-changing nonlinearities
title_fullStr Positive radial solutions for a noncooperative resonant nuclear reactor model with sign-changing nonlinearities
title_full_unstemmed Positive radial solutions for a noncooperative resonant nuclear reactor model with sign-changing nonlinearities
title_short Positive radial solutions for a noncooperative resonant nuclear reactor model with sign-changing nonlinearities
title_sort positive radial solutions for a noncooperative resonant nuclear reactor model with sign changing nonlinearities
topic Noncooperative models
Radial solutions
Resonance
Existence
Fixed point
url https://doi.org/10.1186/s13660-021-02611-0
work_keys_str_mv AT ruipengchen positiveradialsolutionsforanoncooperativeresonantnuclearreactormodelwithsignchangingnonlinearities
AT jiayinliu positiveradialsolutionsforanoncooperativeresonantnuclearreactormodelwithsignchangingnonlinearities
AT guangchenzhang positiveradialsolutionsforanoncooperativeresonantnuclearreactormodelwithsignchangingnonlinearities
AT xiangyukong positiveradialsolutionsforanoncooperativeresonantnuclearreactormodelwithsignchangingnonlinearities