Summary: | Abstract Background Recent whole genome sequencing (WGS) analysis identified a viable triploid strain of Trypanosoma congolense. This triploid strain BANANCL2 was a clone of the field isolate BANAN/83/CRTRA/64 that was collected from cattle in Burkina Faso in 1983. Results We demonstrated the viability and stability of triploidy throughout the complete life-cycle of the parasite by infecting tsetse flies with the triploid clone BANANCL2. Proboscis-positive tsetse flies efficiently transmitted the parasites to mice resulting in systemic infections. WGS of the parasites was performed at all life-cycle stages, and a method based on a block alternative allele frequency spectrum was developed to efficiently detect the ploidy profiles of samples with low read depth. This approach confirmed the triploid profile of parasites throughout their life-cycle in the tsetse fly and the mammalian host, demonstrating that triploidy is present at all stages and is stable over time. Conclusion The presence of viable field-isolated triploid parasites indicates another possible layer of genetic diversity in natural T. congolense populations. The comparison between triploid and diploid parasites provides a unique model system to study the impact of chromosome copy number variations in African trypanosomes. In addition, the consequences of triploidy can be further investigated using this stable triploid model.
|