Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017

<p>Some of the highest specific mass change rates in Antarctica are reported for the Antarctic Peninsula. However, the existing estimates for the northern Antarctic Peninsula (<span class="inline-formula">&lt;70</span><span class="inline-formula"><s...

Full description

Bibliographic Details
Main Authors: T. Seehaus, C. Sommer, T. Dethinne, P. Malz
Format: Article
Language:English
Published: Copernicus Publications 2023-11-01
Series:The Cryosphere
Online Access:https://tc.copernicus.org/articles/17/4629/2023/tc-17-4629-2023.pdf
_version_ 1827769505273610240
author T. Seehaus
C. Sommer
T. Dethinne
T. Dethinne
P. Malz
author_facet T. Seehaus
C. Sommer
T. Dethinne
T. Dethinne
P. Malz
author_sort T. Seehaus
collection DOAJ
description <p>Some of the highest specific mass change rates in Antarctica are reported for the Antarctic Peninsula. However, the existing estimates for the northern Antarctic Peninsula (<span class="inline-formula">&lt;70</span><span class="inline-formula"><sup>∘</sup></span> S) are either spatially limited or are affected by considerable uncertainties. The complex topography, frequent cloud cover, limitations in ice thickness information, boundary effects, and uncertain glacial–isostatic adjustment estimates affect the ice sheet mass change estimates using altimetry, gravimetry, or the input-output method. Within this study, the first assessment of the geodetic mass balance throughout the ice sheet of the northern Antarctic Peninsula is carried out employing bi-static synthetic aperture radar (SAR) data from the TanDEM-X satellite mission. Repeat coverages from the austral winters of 2013 and 2017 are employed. Overall, coverage of 96.4 % of the study area by surface elevation change measurements and a total mass budget of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">24.1</mn><mo>±</mo><mn mathvariant="normal">2.8</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="3db16c0a953d98b866947d147ebdb7fc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-17-4629-2023-ie00001.svg" width="58pt" height="10pt" src="tc-17-4629-2023-ie00001.png"/></svg:svg></span></span> Gt a<span class="inline-formula"><sup>−1</sup></span> are revealed. The spatial distribution of the surface elevation and mass changes points out that the former ice shelf tributary glaciers of the Prince Gustav Channel, Larsen A and B, and Wordie ice shelves are the hotspots of ice loss in the study area and highlights the long-lasting dynamic glacier adjustments after the ice shelf break-up events. The highest mass change rate is revealed for the Airy–Seller–Fleming glacier system at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">4.9</mn><mo>±</mo><mn mathvariant="normal">0.6</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="f9aaed9b17a621f3881ebff8c6239a6b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-17-4629-2023-ie00002.svg" width="52pt" height="10pt" src="tc-17-4629-2023-ie00002.png"/></svg:svg></span></span> Gt a<span class="inline-formula"><sup>−1</sup></span>, and the highest average surface elevation change rate of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">2.30</mn><mo>±</mo><mn mathvariant="normal">0.03</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="2bb57df1dc99244be9e82fd9ff1b60f2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-17-4629-2023-ie00003.svg" width="64pt" height="10pt" src="tc-17-4629-2023-ie00003.png"/></svg:svg></span></span> m a<span class="inline-formula"><sup>−1</sup></span> is observed at Drygalski Glacier. The comparison of the ice mass budget with anomalies in the climatic mass balance indicates, that for wide parts of the southern section of the study area, the mass changes can be partly attributed to changes in the climatic mass balance. However, imbalanced high ice discharge drives the overall ice loss. The previously reported connection between mid-ocean warming along the southern section of the west coast and increased frontal glacier recession does not repeat in the pattern of the observed glacier mass losses, excluding in Wordie Bay. The obtained results provide information on ice surface elevation and mass changes for the entire northern Antarctic Peninsula on unprecedented spatially detailed scales and with high precision and will be beneficial for subsequent analysis and modeling.</p>
first_indexed 2024-03-11T12:25:53Z
format Article
id doaj.art-967e265326484991b811db90f7937e1e
institution Directory Open Access Journal
issn 1994-0416
1994-0424
language English
last_indexed 2024-03-11T12:25:53Z
publishDate 2023-11-01
publisher Copernicus Publications
record_format Article
series The Cryosphere
spelling doaj.art-967e265326484991b811db90f7937e1e2023-11-06T09:33:08ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242023-11-01174629464410.5194/tc-17-4629-2023Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017T. Seehaus0C. Sommer1T. Dethinne2T. Dethinne3P. Malz4Institute of Geography, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, GermanyInstitute of Geography, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, GermanyLaboratory of Climatology, University of Liège, Liège, BelgiumCentre Spatial de Liège, University of Liège, Liège, BelgiumInstitute of Geography, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany<p>Some of the highest specific mass change rates in Antarctica are reported for the Antarctic Peninsula. However, the existing estimates for the northern Antarctic Peninsula (<span class="inline-formula">&lt;70</span><span class="inline-formula"><sup>∘</sup></span> S) are either spatially limited or are affected by considerable uncertainties. The complex topography, frequent cloud cover, limitations in ice thickness information, boundary effects, and uncertain glacial–isostatic adjustment estimates affect the ice sheet mass change estimates using altimetry, gravimetry, or the input-output method. Within this study, the first assessment of the geodetic mass balance throughout the ice sheet of the northern Antarctic Peninsula is carried out employing bi-static synthetic aperture radar (SAR) data from the TanDEM-X satellite mission. Repeat coverages from the austral winters of 2013 and 2017 are employed. Overall, coverage of 96.4 % of the study area by surface elevation change measurements and a total mass budget of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">24.1</mn><mo>±</mo><mn mathvariant="normal">2.8</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="3db16c0a953d98b866947d147ebdb7fc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-17-4629-2023-ie00001.svg" width="58pt" height="10pt" src="tc-17-4629-2023-ie00001.png"/></svg:svg></span></span> Gt a<span class="inline-formula"><sup>−1</sup></span> are revealed. The spatial distribution of the surface elevation and mass changes points out that the former ice shelf tributary glaciers of the Prince Gustav Channel, Larsen A and B, and Wordie ice shelves are the hotspots of ice loss in the study area and highlights the long-lasting dynamic glacier adjustments after the ice shelf break-up events. The highest mass change rate is revealed for the Airy–Seller–Fleming glacier system at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">4.9</mn><mo>±</mo><mn mathvariant="normal">0.6</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="f9aaed9b17a621f3881ebff8c6239a6b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-17-4629-2023-ie00002.svg" width="52pt" height="10pt" src="tc-17-4629-2023-ie00002.png"/></svg:svg></span></span> Gt a<span class="inline-formula"><sup>−1</sup></span>, and the highest average surface elevation change rate of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">2.30</mn><mo>±</mo><mn mathvariant="normal">0.03</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="2bb57df1dc99244be9e82fd9ff1b60f2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-17-4629-2023-ie00003.svg" width="64pt" height="10pt" src="tc-17-4629-2023-ie00003.png"/></svg:svg></span></span> m a<span class="inline-formula"><sup>−1</sup></span> is observed at Drygalski Glacier. The comparison of the ice mass budget with anomalies in the climatic mass balance indicates, that for wide parts of the southern section of the study area, the mass changes can be partly attributed to changes in the climatic mass balance. However, imbalanced high ice discharge drives the overall ice loss. The previously reported connection between mid-ocean warming along the southern section of the west coast and increased frontal glacier recession does not repeat in the pattern of the observed glacier mass losses, excluding in Wordie Bay. The obtained results provide information on ice surface elevation and mass changes for the entire northern Antarctic Peninsula on unprecedented spatially detailed scales and with high precision and will be beneficial for subsequent analysis and modeling.</p>https://tc.copernicus.org/articles/17/4629/2023/tc-17-4629-2023.pdf
spellingShingle T. Seehaus
C. Sommer
T. Dethinne
T. Dethinne
P. Malz
Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017
The Cryosphere
title Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017
title_full Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017
title_fullStr Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017
title_full_unstemmed Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017
title_short Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017
title_sort mass changes of the northern antarctic peninsula ice sheet derived from repeat bi static synthetic aperture radar acquisitions for the period 2013 2017
url https://tc.copernicus.org/articles/17/4629/2023/tc-17-4629-2023.pdf
work_keys_str_mv AT tseehaus masschangesofthenorthernantarcticpeninsulaicesheetderivedfromrepeatbistaticsyntheticapertureradaracquisitionsfortheperiod20132017
AT csommer masschangesofthenorthernantarcticpeninsulaicesheetderivedfromrepeatbistaticsyntheticapertureradaracquisitionsfortheperiod20132017
AT tdethinne masschangesofthenorthernantarcticpeninsulaicesheetderivedfromrepeatbistaticsyntheticapertureradaracquisitionsfortheperiod20132017
AT tdethinne masschangesofthenorthernantarcticpeninsulaicesheetderivedfromrepeatbistaticsyntheticapertureradaracquisitionsfortheperiod20132017
AT pmalz masschangesofthenorthernantarcticpeninsulaicesheetderivedfromrepeatbistaticsyntheticapertureradaracquisitionsfortheperiod20132017