Spectra of Complemented Triangulation Graphs
The <i>complemented triangulation graph</i> of a graph <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">CT</mi><...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-09-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/10/17/3168 |
_version_ | 1797494332725395456 |
---|---|
author | Jia Wei Jing Wang |
author_facet | Jia Wei Jing Wang |
author_sort | Jia Wei |
collection | DOAJ |
description | The <i>complemented triangulation graph</i> of a graph <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">CT</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, is defined as the graph obtained from <i>G</i> by adding, for each edge <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mi>v</mi></mrow></semantics></math></inline-formula> of <i>G</i>, a new vertex whose neighbours are the vertices of <i>G</i> other than <i>u</i> and <i>v</i>. In this paper, we first obtain the <i>A</i>-spectra, the <i>L</i>-spectra, and the <i>Q</i>-spectra of the complemented triangulation graphs of regular graphs. By using the results, we construct infinitely many pairs of <i>A</i>-cospectral graphs, <i>L</i>-cospectral graphs, and <i>Q</i>-cospectral graphs. We also obtain the number of spanning trees and the Kirchhoff index of the complemented triangulation graphs of regular graphs. |
first_indexed | 2024-03-10T01:32:45Z |
format | Article |
id | doaj.art-9682a4a9911a41bd8475d3cead8f5704 |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-10T01:32:45Z |
publishDate | 2022-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-9682a4a9911a41bd8475d3cead8f57042023-11-23T13:39:38ZengMDPI AGMathematics2227-73902022-09-011017316810.3390/math10173168Spectra of Complemented Triangulation GraphsJia Wei0Jing Wang1School of Education, Lanzhou University of Arts and Science, Lanzhou 730000, ChinaSchool of Education, Lanzhou University of Arts and Science, Lanzhou 730000, ChinaThe <i>complemented triangulation graph</i> of a graph <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">CT</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, is defined as the graph obtained from <i>G</i> by adding, for each edge <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mi>v</mi></mrow></semantics></math></inline-formula> of <i>G</i>, a new vertex whose neighbours are the vertices of <i>G</i> other than <i>u</i> and <i>v</i>. In this paper, we first obtain the <i>A</i>-spectra, the <i>L</i>-spectra, and the <i>Q</i>-spectra of the complemented triangulation graphs of regular graphs. By using the results, we construct infinitely many pairs of <i>A</i>-cospectral graphs, <i>L</i>-cospectral graphs, and <i>Q</i>-cospectral graphs. We also obtain the number of spanning trees and the Kirchhoff index of the complemented triangulation graphs of regular graphs.https://www.mdpi.com/2227-7390/10/17/3168<i>A</i>-spectrum<i>L</i>-spectrum<i>Q</i>-spectrumcomplemented triangulation graph |
spellingShingle | Jia Wei Jing Wang Spectra of Complemented Triangulation Graphs Mathematics <i>A</i>-spectrum <i>L</i>-spectrum <i>Q</i>-spectrum complemented triangulation graph |
title | Spectra of Complemented Triangulation Graphs |
title_full | Spectra of Complemented Triangulation Graphs |
title_fullStr | Spectra of Complemented Triangulation Graphs |
title_full_unstemmed | Spectra of Complemented Triangulation Graphs |
title_short | Spectra of Complemented Triangulation Graphs |
title_sort | spectra of complemented triangulation graphs |
topic | <i>A</i>-spectrum <i>L</i>-spectrum <i>Q</i>-spectrum complemented triangulation graph |
url | https://www.mdpi.com/2227-7390/10/17/3168 |
work_keys_str_mv | AT jiawei spectraofcomplementedtriangulationgraphs AT jingwang spectraofcomplementedtriangulationgraphs |