Predicting the Porosity in Selective Laser Melting Parts Using Hybrid Regression Convolutional Neural Network

Assessing the porosity in Selective Laser Melting (SLM) parts is a challenging issue, and the drawback of using the existing gray value analysis method to assess the porosity is the difficulty and subjectivity in selecting a uniform grayscale threshold to convert a single slice to binary image to hi...

Full description

Bibliographic Details
Main Authors: Nawaf Mohammad H. Alamri, Michael Packianather, Samuel Bigot
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/24/12571
Description
Summary:Assessing the porosity in Selective Laser Melting (SLM) parts is a challenging issue, and the drawback of using the existing gray value analysis method to assess the porosity is the difficulty and subjectivity in selecting a uniform grayscale threshold to convert a single slice to binary image to highlight the porosity. This paper proposes a new approach based on the use of a Regression Convolutional Neural Network (RCNN) algorithm to predict the percent of porosity in CT scans of finished SLM parts, without the need for subjective difficult thresholding determination to convert a single slice to a binary image. In order to test the algorithm, as the training of the RCNN would require a large amount of experimental data, this paper proposed a new efficient approach of creating artificial porosity images mimicking the real CT scan slices of the finished SLM part with a similarity index of 0.9976. Applying RCNN improved porosity prediction accuracy from 68.60% for image binarization method to 75.50% using the RCNN. The algorithm was then further developed by optimizing its parameters using Bees Algorithm (BA), which is known to mimic the behavior of honeybees, and the hybrid Bees Regression Convolutional Neural Network (BA-RCNN) produced better prediction accuracy with a value of 85.33%.
ISSN:2076-3417