TEMPERATURE EFFECT OF CHANGES IN THE HYDRATION PROPERTIES OF THE Cl− ANION IN HUMAN BLOOD

The work with the biological objects has been carried out on the basis of a previously developed methodology for the study of the hydration properties of various molecular groups in solutions containing organic components. The nuclear magnetic resonance (NMR) method has become the main experimental...

Full description

Bibliographic Details
Main Authors: E. D. Kozlova, I. D. Nemeshev, A. V. Donets
Format: Article
Language:English
Published: Scientia Publishing House 2020-08-01
Series:Juvenis Scientia
Subjects:
Online Access:https://en.jscientia.org/2020-6-4-03
Description
Summary:The work with the biological objects has been carried out on the basis of a previously developed methodology for the study of the hydration properties of various molecular groups in solutions containing organic components. The nuclear magnetic resonance (NMR) method has become the main experimental method, with the help of which it has become possible to detect and theoretically describe the temperature effect of changing the hydration properties of certain anions in water-salt and multicomponent solutions. This effect has also been recorded for the anions of chlorine, one of the most common chemical elements in the bodies of the living tissue. This work is a continuation of a series of works on the study of the possible influence of this effect on the thermoregulation of living tissue. This work is carried out at the confluence of physics, chemistry and biology, taking into account the knowledge accumulated in the world on the physical and chemical description of the systems under study to obtain an explanation of a biologically significant result. For the first time, such a study was carried out with biological objects characteristic of the human body – with blood and saliva. This effect should work throughout the whole body, given the presence of blood in all its structures. In the study of saliva which has been carried out, this effect was found as well. The results of the work expand and clarify the previously proposed hypothesis of thermoregulation of warm-blooded living tissue. The proposed feedback in the energy processes control system should work with different biological solutions characteristic of living objects. The work implements an approach notable for its logical simplicity, but at the same time this approach allows to connect the latest possibilities of modern science in the field of interdisciplinary research.
ISSN:2414-3782
2414-3790