Highly efficient method for gene delivery in mouse dorsal root ganglia neurons

The development of gene transfection technologies has greatly advanced our understanding of life sciences. While use of viral vectors has clear efficacy, it requires specific expertise and biological containment conditions. Electroporation has become an effective and commonly used method for introdu...

Full description

Bibliographic Details
Main Authors: Lingli eYu, Florie eReynaud, Julien eFalk, Ambre eSpencer, Yin-Di eDing, Véronique eBaumlé, Ruisheng eLu, Valérie eCastellani, Chonggang eYuan, Brian B. Rudkin
Format: Article
Language:English
Published: Frontiers Media S.A. 2015-02-01
Series:Frontiers in Molecular Neuroscience
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fnmol.2015.00002/full
_version_ 1818109014606610432
author Lingli eYu
Lingli eYu
Lingli eYu
Florie eReynaud
Julien eFalk
Ambre eSpencer
Ambre eSpencer
Ambre eSpencer
Yin-Di eDing
Yin-Di eDing
Yin-Di eDing
Véronique eBaumlé
Véronique eBaumlé
Ruisheng eLu
Ruisheng eLu
Valérie eCastellani
Chonggang eYuan
Chonggang eYuan
Brian B. Rudkin
Brian B. Rudkin
author_facet Lingli eYu
Lingli eYu
Lingli eYu
Florie eReynaud
Julien eFalk
Ambre eSpencer
Ambre eSpencer
Ambre eSpencer
Yin-Di eDing
Yin-Di eDing
Yin-Di eDing
Véronique eBaumlé
Véronique eBaumlé
Ruisheng eLu
Ruisheng eLu
Valérie eCastellani
Chonggang eYuan
Chonggang eYuan
Brian B. Rudkin
Brian B. Rudkin
author_sort Lingli eYu
collection DOAJ
description The development of gene transfection technologies has greatly advanced our understanding of life sciences. While use of viral vectors has clear efficacy, it requires specific expertise and biological containment conditions. Electroporation has become an effective and commonly used method for introducing DNA into neurons and in intact brain tissue. The present study describes the use of the Neon® electroporation system to transfect genes into dorsal root ganglia neurons isolated from embryonic mouse Day 13.5 to 16. This cell type has been particularly recalcitrant and refractory to physical or chemical methods for introduction of DNA. By optimizing the culture condition and parameters including voltage and duration for this specific electroporation system, high efficiency (60 – 80%) and low toxicity (> 60% survival) were achieved with robust differentiation in response to Nerve growth factor (NGF). Moreover, 3-50 times fewer cells are needed (6x104) compared with other traditional electroporation methods. This approach underlines the efficacy of this type of electroporation, particularly when only limited amount of cells can be obtained, and is expected to greatly facilitate the study of gene function in dorsal root ganglia neuron cultures.
first_indexed 2024-12-11T02:24:31Z
format Article
id doaj.art-969c65265992442685e0c5e6886304c7
institution Directory Open Access Journal
issn 1662-5099
language English
last_indexed 2024-12-11T02:24:31Z
publishDate 2015-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Molecular Neuroscience
spelling doaj.art-969c65265992442685e0c5e6886304c72022-12-22T01:23:57ZengFrontiers Media S.A.Frontiers in Molecular Neuroscience1662-50992015-02-01810.3389/fnmol.2015.00002125333Highly efficient method for gene delivery in mouse dorsal root ganglia neuronsLingli eYu0Lingli eYu1Lingli eYu2Florie eReynaud3Julien eFalk4Ambre eSpencer5Ambre eSpencer6Ambre eSpencer7Yin-Di eDing8Yin-Di eDing9Yin-Di eDing10Véronique eBaumlé11Véronique eBaumlé12Ruisheng eLu13Ruisheng eLu14Valérie eCastellani15Chonggang eYuan16Chonggang eYuan17Brian B. Rudkin18Brian B. Rudkin19Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de La Céllule, CNRS/Ecole normale supérieure de Lyon/University of Lyon 1 Claude BernardJoint Laboratory of Neuropathogenesis, Key Laboratory of Brain Fu.., East China Normal University (ECNU)East China Normal University (ECNU)University of Lyon, University of Lyon 1 Claude BernardUniversity of Lyon, University of Lyon 1 Claude BernardDifferentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de La Céllule, CNRS/Ecole normale supérieure de Lyon/University of Lyon 1 Claude BernardJoint Laboratory of Neuropathogenesis, Key Laboratory of Brain Fu.., East China Normal University (ECNU)East China Normal University (ECNU)Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de La Céllule, CNRS/Ecole normale supérieure de Lyon/University of Lyon 1 Claude BernardJoint Laboratory of Neuropathogenesis, Key Laboratory of Brain Fu.., East China Normal University (ECNU)East China Normal University (ECNU)Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de La Céllule, CNRS/Ecole normale supérieure de Lyon/University of Lyon 1 Claude BernardJoint Laboratory of Neuropathogenesis, Key Laboratory of Brain Fu.., East China Normal University (ECNU)Joint Laboratory of Neuropathogenesis, Key Laboratory of Brain Fu.., East China Normal University (ECNU)East China Normal University (ECNU)University of Lyon, University of Lyon 1 Claude BernardJoint Laboratory of Neuropathogenesis, Key Laboratory of Brain Fu.., East China Normal University (ECNU)East China Normal University (ECNU)Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de La Céllule, CNRS/Ecole normale supérieure de Lyon/University of Lyon 1 Claude BernardJoint Laboratory of Neuropathogenesis, Key Laboratory of Brain Fu.., East China Normal University (ECNU)The development of gene transfection technologies has greatly advanced our understanding of life sciences. While use of viral vectors has clear efficacy, it requires specific expertise and biological containment conditions. Electroporation has become an effective and commonly used method for introducing DNA into neurons and in intact brain tissue. The present study describes the use of the Neon® electroporation system to transfect genes into dorsal root ganglia neurons isolated from embryonic mouse Day 13.5 to 16. This cell type has been particularly recalcitrant and refractory to physical or chemical methods for introduction of DNA. By optimizing the culture condition and parameters including voltage and duration for this specific electroporation system, high efficiency (60 – 80%) and low toxicity (> 60% survival) were achieved with robust differentiation in response to Nerve growth factor (NGF). Moreover, 3-50 times fewer cells are needed (6x104) compared with other traditional electroporation methods. This approach underlines the efficacy of this type of electroporation, particularly when only limited amount of cells can be obtained, and is expected to greatly facilitate the study of gene function in dorsal root ganglia neuron cultures.http://journal.frontiersin.org/Journal/10.3389/fnmol.2015.00002/fullElectroporationGene Expressionprimary neuronsnucleofectionEGFP expressionDorsal Root Ganglion (DRG) neuron
spellingShingle Lingli eYu
Lingli eYu
Lingli eYu
Florie eReynaud
Julien eFalk
Ambre eSpencer
Ambre eSpencer
Ambre eSpencer
Yin-Di eDing
Yin-Di eDing
Yin-Di eDing
Véronique eBaumlé
Véronique eBaumlé
Ruisheng eLu
Ruisheng eLu
Valérie eCastellani
Chonggang eYuan
Chonggang eYuan
Brian B. Rudkin
Brian B. Rudkin
Highly efficient method for gene delivery in mouse dorsal root ganglia neurons
Frontiers in Molecular Neuroscience
Electroporation
Gene Expression
primary neurons
nucleofection
EGFP expression
Dorsal Root Ganglion (DRG) neuron
title Highly efficient method for gene delivery in mouse dorsal root ganglia neurons
title_full Highly efficient method for gene delivery in mouse dorsal root ganglia neurons
title_fullStr Highly efficient method for gene delivery in mouse dorsal root ganglia neurons
title_full_unstemmed Highly efficient method for gene delivery in mouse dorsal root ganglia neurons
title_short Highly efficient method for gene delivery in mouse dorsal root ganglia neurons
title_sort highly efficient method for gene delivery in mouse dorsal root ganglia neurons
topic Electroporation
Gene Expression
primary neurons
nucleofection
EGFP expression
Dorsal Root Ganglion (DRG) neuron
url http://journal.frontiersin.org/Journal/10.3389/fnmol.2015.00002/full
work_keys_str_mv AT linglieyu highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT linglieyu highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT linglieyu highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT florieereynaud highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT julienefalk highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT ambreespencer highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT ambreespencer highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT ambreespencer highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT yindieding highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT yindieding highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT yindieding highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT veroniqueebaumle highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT veroniqueebaumle highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT ruishengelu highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT ruishengelu highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT valerieecastellani highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT chonggangeyuan highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT chonggangeyuan highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT brianbrudkin highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons
AT brianbrudkin highlyefficientmethodforgenedeliveryinmousedorsalrootganglianeurons