A spatiotemporal ensemble model to predict gross beta particulate radioactivity across the contiguous United States

Particulate radioactivity, a characteristic of particulate matter, is primarily determined by the abundance of radionuclides that are bound to airborne particulates. Exposure to high levels of particulate radioactivity has been associated with negative health outcomes. However, there are currently n...

Full description

Bibliographic Details
Main Authors: Longxiang Li, Annelise J. Blomberg, Joy Lawrence, Weeberb J. Réquia, Yaguang Wei, Man Liu, Adjani A. Peralta, Petros Koutrakis
Format: Article
Language:English
Published: Elsevier 2021-11-01
Series:Environment International
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0160412021002683
_version_ 1831652391782449152
author Longxiang Li
Annelise J. Blomberg
Joy Lawrence
Weeberb J. Réquia
Yaguang Wei
Man Liu
Adjani A. Peralta
Petros Koutrakis
author_facet Longxiang Li
Annelise J. Blomberg
Joy Lawrence
Weeberb J. Réquia
Yaguang Wei
Man Liu
Adjani A. Peralta
Petros Koutrakis
author_sort Longxiang Li
collection DOAJ
description Particulate radioactivity, a characteristic of particulate matter, is primarily determined by the abundance of radionuclides that are bound to airborne particulates. Exposure to high levels of particulate radioactivity has been associated with negative health outcomes. However, there are currently no spatially and temporally resolved particulate radioactivity data for exposure assessment purposes. We estimated the monthly distributions of gross beta particulate radioactivity across the contiguous United States from 2001 to 2017 with a spatial resolution of 32 km, via a multi-stage ensemble-based model. Particulate radioactivity was measured at 129 RadNet monitors across the contiguous U.S. In stage one, we built 264 base learning models using six methods, then selected nine base models that provide different predictions. In stage two, we used a non-negative geographically and temporally weighted regression method to aggregate the selected base learner predictions based on their local performance. The results of block cross-validation analysis suggested that the non-negative geographically and temporally weighted regression ensemble learning model outperformed all base learning model with the smallest rooted mean square error (0.094 mBq/m3). Our model provided an accurate estimation of particulate radioactivity, thus can be used in future health studies.
first_indexed 2024-12-19T15:45:37Z
format Article
id doaj.art-96a37d78a41446f49c913c593675c251
institution Directory Open Access Journal
issn 0160-4120
language English
last_indexed 2024-12-19T15:45:37Z
publishDate 2021-11-01
publisher Elsevier
record_format Article
series Environment International
spelling doaj.art-96a37d78a41446f49c913c593675c2512022-12-21T20:15:21ZengElsevierEnvironment International0160-41202021-11-01156106643A spatiotemporal ensemble model to predict gross beta particulate radioactivity across the contiguous United StatesLongxiang Li0Annelise J. Blomberg1Joy Lawrence2Weeberb J. Réquia3Yaguang Wei4Man Liu5Adjani A. Peralta6Petros Koutrakis7Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114, USA; Corresponding author at: Department of Environmental Health, Harvard T.H. Chan School of Public Health, Landmark Center 4th West, 401 Park Drive, Boston, MA 02215, USA.Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114, USA; Division of Occupational and Environmental Medicine, Lund University, Lund, SwedenDepartment of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114, USASchool of Public Policy and Government, Fundação Getúlio Vargas Brasília, Distrito Federal, BrazilDepartment of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114, USADepartment of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114, USADepartment of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114, USADepartment of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114, USAParticulate radioactivity, a characteristic of particulate matter, is primarily determined by the abundance of radionuclides that are bound to airborne particulates. Exposure to high levels of particulate radioactivity has been associated with negative health outcomes. However, there are currently no spatially and temporally resolved particulate radioactivity data for exposure assessment purposes. We estimated the monthly distributions of gross beta particulate radioactivity across the contiguous United States from 2001 to 2017 with a spatial resolution of 32 km, via a multi-stage ensemble-based model. Particulate radioactivity was measured at 129 RadNet monitors across the contiguous U.S. In stage one, we built 264 base learning models using six methods, then selected nine base models that provide different predictions. In stage two, we used a non-negative geographically and temporally weighted regression method to aggregate the selected base learner predictions based on their local performance. The results of block cross-validation analysis suggested that the non-negative geographically and temporally weighted regression ensemble learning model outperformed all base learning model with the smallest rooted mean square error (0.094 mBq/m3). Our model provided an accurate estimation of particulate radioactivity, thus can be used in future health studies.http://www.sciencedirect.com/science/article/pii/S0160412021002683Particulate radioactivitySpatiotemporal ensemble learningStatistical learningGeographically and temporally weighted regression
spellingShingle Longxiang Li
Annelise J. Blomberg
Joy Lawrence
Weeberb J. Réquia
Yaguang Wei
Man Liu
Adjani A. Peralta
Petros Koutrakis
A spatiotemporal ensemble model to predict gross beta particulate radioactivity across the contiguous United States
Environment International
Particulate radioactivity
Spatiotemporal ensemble learning
Statistical learning
Geographically and temporally weighted regression
title A spatiotemporal ensemble model to predict gross beta particulate radioactivity across the contiguous United States
title_full A spatiotemporal ensemble model to predict gross beta particulate radioactivity across the contiguous United States
title_fullStr A spatiotemporal ensemble model to predict gross beta particulate radioactivity across the contiguous United States
title_full_unstemmed A spatiotemporal ensemble model to predict gross beta particulate radioactivity across the contiguous United States
title_short A spatiotemporal ensemble model to predict gross beta particulate radioactivity across the contiguous United States
title_sort spatiotemporal ensemble model to predict gross beta particulate radioactivity across the contiguous united states
topic Particulate radioactivity
Spatiotemporal ensemble learning
Statistical learning
Geographically and temporally weighted regression
url http://www.sciencedirect.com/science/article/pii/S0160412021002683
work_keys_str_mv AT longxiangli aspatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT annelisejblomberg aspatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT joylawrence aspatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT weeberbjrequia aspatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT yaguangwei aspatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT manliu aspatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT adjaniaperalta aspatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT petroskoutrakis aspatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT longxiangli spatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT annelisejblomberg spatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT joylawrence spatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT weeberbjrequia spatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT yaguangwei spatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT manliu spatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT adjaniaperalta spatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates
AT petroskoutrakis spatiotemporalensemblemodeltopredictgrossbetaparticulateradioactivityacrossthecontiguousunitedstates