Implementing and testing theoretical fission fragment yields in a Hauser-Feshbach statistical decay framework

We implement fission fragment yields, calculated using Brownian shape-motion on a macroscopic-microscopic potential energy surface in six dimensions, into the Hauser-Feshbach statistical decay code CGMF. This combination allows us to test the impact of utilizing theoretically-calculated fission frag...

Full description

Bibliographic Details
Main Authors: Jaffke Patrick, Möller Peter, Stetcu Ionel, Talou Patrick, Schmitt Christelle
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:EPJ Web of Conferences
Online Access:https://doi.org/10.1051/epjconf/201816900006
Description
Summary:We implement fission fragment yields, calculated using Brownian shape-motion on a macroscopic-microscopic potential energy surface in six dimensions, into the Hauser-Feshbach statistical decay code CGMF. This combination allows us to test the impact of utilizing theoretically-calculated fission fragment yields on the subsequent prompt neutron and γ-ray emission. We draw connections between the fragment yields and the total kinetic energy TKE of the fission fragments and demonstrate that the use of calculated yields can introduce a difference in the 〈TKE〉 and, thus, the prompt neutron multiplicity v, as compared with experimental fragment yields. We deduce the uncertainty on the 〈TKE〉 and v from this procedure and identify possible applications.
ISSN:2100-014X