Availability of Ferritin-Bound Iron to Enterobacteriaceae

The sequestration of iron in case of infection, termed nutritional immunity, is an established strategy of host defense. However, the interaction between pathogens and the mammalian iron storage protein ferritin is hitherto not completely understood. To better characterize the function of ferritin i...

Full description

Bibliographic Details
Main Authors: Clemens M. Gehrer, Alexander Hoffmann, Richard Hilbe, Philipp Grubwieser, Anna-Maria Mitterstiller, Heribert Talasz, Ferric C. Fang, Esther G. Meyron-Holtz, Sarah H. Atkinson, Günter Weiss, Manfred Nairz
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/23/21/13087
Description
Summary:The sequestration of iron in case of infection, termed nutritional immunity, is an established strategy of host defense. However, the interaction between pathogens and the mammalian iron storage protein ferritin is hitherto not completely understood. To better characterize the function of ferritin in Gram-negative infections, we incubated iron-starved cultures of <i>Salmonella</i> Typhimurium and knockout mutant strains defective for major iron uptake pathways or <i><i>Escherichia coli</i></i> with horse spleen ferritin or ionic iron as the sole iron source. Additionally, we added bovine superoxide dismutase and protease inhibitors to the growth medium to assess the effect of superoxide and bacterial proteases, respectively, on <i>Salmonella</i> proliferation and reductive iron release. Compared to free ionic iron, ferritin-bound iron was less available to <i>Salmonella</i>, but was still sufficient to significantly enhance the growth of the bacteria. In the absence of various iron acquisition genes, the availability of ferritin iron further decreased. Supplementation with superoxide dismutase significantly reduced the growth of the Δ<i>entC</i> knockout strain with holoferritin as the sole iron source in comparison with ionic ferrous iron. In contrast, this difference was not observed in the wildtype strain, suggesting that superoxide dismutase undermines bacterial iron uptake from ferritin by siderophore-independent mechanisms. Ferritin seems to diminish iron availability for bacteria in comparison to ionic iron, and its iron sequestering effect could possibly be enhanced by host superoxide dismutase activity.
ISSN:1661-6596
1422-0067