Modelling the pathogenesis of X-linked distal hereditary motor neuropathy using patient-derived iPSCs
ATP7A encodes a copper-transporting P-type ATPase and is one of 23 genes in which mutations produce distal hereditary motor neuropathy (dHMN), a group of diseases characterized by length-dependent axonal degeneration of motor neurons. We have generated induced pluripotent stem cell (iPSC)-derived mo...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Company of Biologists
2020-02-01
|
Series: | Disease Models & Mechanisms |
Subjects: | |
Online Access: | http://dmm.biologists.org/content/13/2/dmm041541 |
Summary: | ATP7A encodes a copper-transporting P-type ATPase and is one of 23 genes in which mutations produce distal hereditary motor neuropathy (dHMN), a group of diseases characterized by length-dependent axonal degeneration of motor neurons. We have generated induced pluripotent stem cell (iPSC)-derived motor neurons from a patient with the p.T994I ATP7A gene mutation as an in vitro model for X-linked dHMN (dHMNX). Patient motor neurons show a marked reduction of ATP7A protein levels in the soma when compared to control motor neurons and failed to upregulate expression of ATP7A under copper-loading conditions. These results recapitulate previous findings obtained in dHMNX patient fibroblasts and in primary cells from a rodent model of dHMNX, indicating that patient iPSC-derived motor neurons will be an important resource for studying the role of copper in the pathogenic processes that lead to axonal degeneration in dHMNX. |
---|---|
ISSN: | 1754-8403 1754-8411 |