A universal bifurcation mechanism arising from progressive hydroelastic waves

A unidirectional, weakly dispersive nonlinear model is proposed to describe the supercritical bifurcation arising from hydroelastic waves in deep water. This model equation, including quadratic, cubic, and quartic nonlinearities, is an extension of the famous Whitham equation. The coefficients of th...

Full description

Bibliographic Details
Main Author: Zhan Wang
Format: Article
Language:English
Published: Elsevier 2022-01-01
Series:Theoretical and Applied Mechanics Letters
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2095034921001227
Description
Summary:A unidirectional, weakly dispersive nonlinear model is proposed to describe the supercritical bifurcation arising from hydroelastic waves in deep water. This model equation, including quadratic, cubic, and quartic nonlinearities, is an extension of the famous Whitham equation. The coefficients of the nonlinear terms are chosen to match with the key properties of the full Euler equations, precisely, the associated cubic nonlinear Schrödinger equation and the amplitude of the solitary wave at the bifurcation point. It is shown that the supercritical bifurcation, rich with Stokes, solitary, generalized solitary, and dark solitary waves in the vicinity of the phase speed minimum, is a universal bifurcation mechanism. The newly developed model can capture the essential features near the bifurcation point and easily be generalized to other nonlinear wave problems in hydrodynamics.
ISSN:2095-0349