AgTC and AgETL: open-source tools to enhance data collection and management for plant science research
Advancements in phenotyping technology have enabled plant science researchers to gather large volumes of information from their experiments, especially those that evaluate multiple genotypes. To fully leverage these complex and often heterogeneous data sets (i.e. those that differ in format and stru...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2024-02-01
|
Series: | Frontiers in Plant Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fpls.2024.1265073/full |
_version_ | 1827346218215276544 |
---|---|
author | Luis Vargas-Rojas To-Chia Ting Katherine M. Rainey Matthew Reynolds Diane R. Wang |
author_facet | Luis Vargas-Rojas To-Chia Ting Katherine M. Rainey Matthew Reynolds Diane R. Wang |
author_sort | Luis Vargas-Rojas |
collection | DOAJ |
description | Advancements in phenotyping technology have enabled plant science researchers to gather large volumes of information from their experiments, especially those that evaluate multiple genotypes. To fully leverage these complex and often heterogeneous data sets (i.e. those that differ in format and structure), scientists must invest considerable time in data processing, and data management has emerged as a considerable barrier for downstream application. Here, we propose a pipeline to enhance data collection, processing, and management from plant science studies comprising of two newly developed open-source programs. The first, called AgTC, is a series of programming functions that generates comma-separated values file templates to collect data in a standard format using either a lab-based computer or a mobile device. The second series of functions, AgETL, executes steps for an Extract-Transform-Load (ETL) data integration process where data are extracted from heterogeneously formatted files, transformed to meet standard criteria, and loaded into a database. There, data are stored and can be accessed for data analysis-related processes, including dynamic data visualization through web-based tools. Both AgTC and AgETL are flexible for application across plant science experiments without programming knowledge on the part of the domain scientist, and their functions are executed on Jupyter Notebook, a browser-based interactive development environment. Additionally, all parameters are easily customized from central configuration files written in the human-readable YAML format. Using three experiments from research laboratories in university and non-government organization (NGO) settings as test cases, we demonstrate the utility of AgTC and AgETL to streamline critical steps from data collection to analysis in the plant sciences. |
first_indexed | 2024-03-07T23:24:56Z |
format | Article |
id | doaj.art-96e2051d58cc4dd69040271446233524 |
institution | Directory Open Access Journal |
issn | 1664-462X |
language | English |
last_indexed | 2024-03-07T23:24:56Z |
publishDate | 2024-02-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Plant Science |
spelling | doaj.art-96e2051d58cc4dd690402714462335242024-02-21T05:13:37ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2024-02-011510.3389/fpls.2024.12650731265073AgTC and AgETL: open-source tools to enhance data collection and management for plant science researchLuis Vargas-Rojas0To-Chia Ting1Katherine M. Rainey2Matthew Reynolds3Diane R. Wang4Department of Agronomy, Purdue University, West Lafayette, IN, United StatesDepartment of Agronomy, Purdue University, West Lafayette, IN, United StatesDepartment of Agronomy, Purdue University, West Lafayette, IN, United StatesWheat Physiology Group, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, MexicoDepartment of Agronomy, Purdue University, West Lafayette, IN, United StatesAdvancements in phenotyping technology have enabled plant science researchers to gather large volumes of information from their experiments, especially those that evaluate multiple genotypes. To fully leverage these complex and often heterogeneous data sets (i.e. those that differ in format and structure), scientists must invest considerable time in data processing, and data management has emerged as a considerable barrier for downstream application. Here, we propose a pipeline to enhance data collection, processing, and management from plant science studies comprising of two newly developed open-source programs. The first, called AgTC, is a series of programming functions that generates comma-separated values file templates to collect data in a standard format using either a lab-based computer or a mobile device. The second series of functions, AgETL, executes steps for an Extract-Transform-Load (ETL) data integration process where data are extracted from heterogeneously formatted files, transformed to meet standard criteria, and loaded into a database. There, data are stored and can be accessed for data analysis-related processes, including dynamic data visualization through web-based tools. Both AgTC and AgETL are flexible for application across plant science experiments without programming knowledge on the part of the domain scientist, and their functions are executed on Jupyter Notebook, a browser-based interactive development environment. Additionally, all parameters are easily customized from central configuration files written in the human-readable YAML format. Using three experiments from research laboratories in university and non-government organization (NGO) settings as test cases, we demonstrate the utility of AgTC and AgETL to streamline critical steps from data collection to analysis in the plant sciences.https://www.frontiersin.org/articles/10.3389/fpls.2024.1265073/fulldata pipelineextract-transform-loaddatabasedata aggregationdata processingplant phenotyping |
spellingShingle | Luis Vargas-Rojas To-Chia Ting Katherine M. Rainey Matthew Reynolds Diane R. Wang AgTC and AgETL: open-source tools to enhance data collection and management for plant science research Frontiers in Plant Science data pipeline extract-transform-load database data aggregation data processing plant phenotyping |
title | AgTC and AgETL: open-source tools to enhance data collection and management for plant science research |
title_full | AgTC and AgETL: open-source tools to enhance data collection and management for plant science research |
title_fullStr | AgTC and AgETL: open-source tools to enhance data collection and management for plant science research |
title_full_unstemmed | AgTC and AgETL: open-source tools to enhance data collection and management for plant science research |
title_short | AgTC and AgETL: open-source tools to enhance data collection and management for plant science research |
title_sort | agtc and agetl open source tools to enhance data collection and management for plant science research |
topic | data pipeline extract-transform-load database data aggregation data processing plant phenotyping |
url | https://www.frontiersin.org/articles/10.3389/fpls.2024.1265073/full |
work_keys_str_mv | AT luisvargasrojas agtcandagetlopensourcetoolstoenhancedatacollectionandmanagementforplantscienceresearch AT tochiating agtcandagetlopensourcetoolstoenhancedatacollectionandmanagementforplantscienceresearch AT katherinemrainey agtcandagetlopensourcetoolstoenhancedatacollectionandmanagementforplantscienceresearch AT matthewreynolds agtcandagetlopensourcetoolstoenhancedatacollectionandmanagementforplantscienceresearch AT dianerwang agtcandagetlopensourcetoolstoenhancedatacollectionandmanagementforplantscienceresearch |