Differential RNA editing landscapes in host cell versus the SARS-CoV-2 genome

Summary: The SARS-CoV-2 pandemic was defined by the emergence of new variants formed through virus mutation originating from random errors not corrected by viral proofreading and/or the host antiviral response introducing mutations into the viral genome. While sequencing information hints at cellula...

Full description

Bibliographic Details
Main Authors: Małgorzata Kurkowiak, Sarah Fletcher, Alison Daniels, Paweł Mozolewski, Domenico Alessandro Silvestris, Ewelina Król, Natalia Marek-Trzonkowska, Ted Hupp, Christine Tait-Burkard
Format: Article
Language:English
Published: Elsevier 2023-11-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004223021089
Description
Summary:Summary: The SARS-CoV-2 pandemic was defined by the emergence of new variants formed through virus mutation originating from random errors not corrected by viral proofreading and/or the host antiviral response introducing mutations into the viral genome. While sequencing information hints at cellular RNA editing pathways playing a role in viral evolution, here, we use an in vitro human cell infection model to assess RNA mutation types in two SARS-CoV-2 strains representing the original and the alpha variants. The variants showed both different cellular responses and mutation patterns with alpha showing higher mutation frequency with most substitutions observed being C-U, indicating an important role for apolipoprotein B mRNA editing catalytic polypeptide-like editing. Knockdown of select APOBEC3s through RNAi increased virus production in the original virus, but not in alpha. Overall, these data suggest a deaminase-independent anti-viral function of APOBECs in SARS-CoV-2 while the C-U editing itself might function to enhance genetic diversity enabling evolutionary adaptation.
ISSN:2589-0042