Аналитический обзор подходов к обнаружению вторжений, основанных на федеративном обучении: преимущества использования и открытые задачи

Для обеспечения точного и своевременного реагирования на различные типы атак системы обнаружения вторжений собирают и анализируют большое количество данных, которые могут включать в том числе и информацию с ограниченным доступом, например, персональные данные или данные, представляющие коммерческую...

Full description

Bibliographic Details
Main Authors: Evgenia Novikova, Elena Fedorchenko, Igor Kotenko, Ivan Kholod
Format: Article
Language:English
Published: Russian Academy of Sciences, St. Petersburg Federal Research Center 2023-09-01
Series:Информатика и автоматизация
Subjects:
Online Access:http://ia.spcras.ru/index.php/sp/article/view/15884
Description
Summary:Для обеспечения точного и своевременного реагирования на различные типы атак системы обнаружения вторжений собирают и анализируют большое количество данных, которые могут включать в том числе и информацию с ограниченным доступом, например, персональные данные или данные, представляющие коммерческую тайну. Следовательно, такие системы могут быть рассмотрены как источник рисков, связанных с обработкой конфиденциальной информации и нарушением ее безопасности. Применение парадигмы федеративного обучения для построения аналитических моделей обнаружения атак и аномалий может значительно снизить такие риски, поскольку данные, генерируемые локально, не передаются какой-либо третьей стороне, а обучение модели осуществляется локально – на источниках данных. Использование федеративного обучения для обнаружения вторжений позволяет решить проблему обучения на данных, которые принадлежат различным организациям, и которые в силу необходимости обеспечения защиты коммерческой или другой тайны, не могут быть выложены в открытый доступ. Таким образом, данный подход позволяет также расширить и разнообразить множество данных, на которых обучаются аналитические модели анализа и повысить тем самым уровень детектируемости разнородных атак. Благодаря тому, что этот подход способен преодолеть вышеупомянутые проблемы, он активно используется для проектирования новых подходов к обнаружению вторжений и аномалий. Авторы систематизировано исследуют существующие решения для обнаружения вторжений и аномалий на основе федеративного обучения, изучают их преимущества, а также формулируют открытые проблемы, связанные с его применением на практике. Особое внимание уделяется архитектуре предлагаемых систем, применяемым методам и моделям обнаружения вторжений, а также обсуждаются подходы к моделированию взаимодействия между множеством пользователей системы и распределению данных между ними. В заключении авторы формулируют открытые задачи, требующие решения для применения систем обнаружения вторжений, основанных на федеративном обучении, на практике.
ISSN:2713-3192
2713-3206