Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica.
Despite its superiority for evaluating gene expression, real-time quantitative polymerase chain reaction (qPCR) results can be significantly biased by the use of inappropriate reference genes under different experimental conditions. Reaumuria soongorica is a dominant species of desert ecosystems in...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4130609?pdf=render |
_version_ | 1818990088500019200 |
---|---|
author | Xia Yan Xicun Dong Wen Zhang Hengxia Yin Honglang Xiao Peng Chen Xiao-Fei Ma |
author_facet | Xia Yan Xicun Dong Wen Zhang Hengxia Yin Honglang Xiao Peng Chen Xiao-Fei Ma |
author_sort | Xia Yan |
collection | DOAJ |
description | Despite its superiority for evaluating gene expression, real-time quantitative polymerase chain reaction (qPCR) results can be significantly biased by the use of inappropriate reference genes under different experimental conditions. Reaumuria soongorica is a dominant species of desert ecosystems in arid central Asia. Given the increasing interest in ecological engineering and potential genetic resources for arid agronomy, it is important to analyze gene function. However, systematic evaluation of stable reference genes should be performed prior to such analyses. In this study, the stabilities of 10 candidate reference genes were analyzed under 4 kinds of abiotic stresses (drought, salt, dark, and heat) within 4 accessions (HG010, HG020, XGG030, and XGG040) from 2 different habitats using 3 algorithms (geNorm, NormFinder, and BestKeeper). After validation of the ribulose-1,5-bisphosphate carboxylase/oxygenase large unite (rbcL) expression pattern, our data suggested that histone H2A (H2A) and eukaryotic initiation factor 4A-2 (EIF4A2) were the most stable reference genes, cyclophilin (CYCL) was moderate, and elongation factor 1α (EF1α) was the worst choice. This first systematic analysis for stably expressed genes will facilitate future functional analyses and deep mining of genetic resources in R. soongorica and other species of the Reaumuria genus. |
first_indexed | 2024-12-20T19:48:49Z |
format | Article |
id | doaj.art-9724f951368340cebf84a61e98216b8e |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-20T19:48:49Z |
publishDate | 2014-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-9724f951368340cebf84a61e98216b8e2022-12-21T19:28:21ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0198e10412410.1371/journal.pone.0104124Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica.Xia YanXicun DongWen ZhangHengxia YinHonglang XiaoPeng ChenXiao-Fei MaDespite its superiority for evaluating gene expression, real-time quantitative polymerase chain reaction (qPCR) results can be significantly biased by the use of inappropriate reference genes under different experimental conditions. Reaumuria soongorica is a dominant species of desert ecosystems in arid central Asia. Given the increasing interest in ecological engineering and potential genetic resources for arid agronomy, it is important to analyze gene function. However, systematic evaluation of stable reference genes should be performed prior to such analyses. In this study, the stabilities of 10 candidate reference genes were analyzed under 4 kinds of abiotic stresses (drought, salt, dark, and heat) within 4 accessions (HG010, HG020, XGG030, and XGG040) from 2 different habitats using 3 algorithms (geNorm, NormFinder, and BestKeeper). After validation of the ribulose-1,5-bisphosphate carboxylase/oxygenase large unite (rbcL) expression pattern, our data suggested that histone H2A (H2A) and eukaryotic initiation factor 4A-2 (EIF4A2) were the most stable reference genes, cyclophilin (CYCL) was moderate, and elongation factor 1α (EF1α) was the worst choice. This first systematic analysis for stably expressed genes will facilitate future functional analyses and deep mining of genetic resources in R. soongorica and other species of the Reaumuria genus.http://europepmc.org/articles/PMC4130609?pdf=render |
spellingShingle | Xia Yan Xicun Dong Wen Zhang Hengxia Yin Honglang Xiao Peng Chen Xiao-Fei Ma Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica. PLoS ONE |
title | Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica. |
title_full | Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica. |
title_fullStr | Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica. |
title_full_unstemmed | Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica. |
title_short | Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica. |
title_sort | reference gene selection for quantitative real time pcr normalization in reaumuria soongorica |
url | http://europepmc.org/articles/PMC4130609?pdf=render |
work_keys_str_mv | AT xiayan referencegeneselectionforquantitativerealtimepcrnormalizationinreaumuriasoongorica AT xicundong referencegeneselectionforquantitativerealtimepcrnormalizationinreaumuriasoongorica AT wenzhang referencegeneselectionforquantitativerealtimepcrnormalizationinreaumuriasoongorica AT hengxiayin referencegeneselectionforquantitativerealtimepcrnormalizationinreaumuriasoongorica AT honglangxiao referencegeneselectionforquantitativerealtimepcrnormalizationinreaumuriasoongorica AT pengchen referencegeneselectionforquantitativerealtimepcrnormalizationinreaumuriasoongorica AT xiaofeima referencegeneselectionforquantitativerealtimepcrnormalizationinreaumuriasoongorica |