Efficient Approach for the Extraction and Identification of Red Pigment from Zanthoxylum bungeanum Maxim and Its Antioxidant Activity

Red pigment (RP) was extracted from the peels of Zanthoxylum bungeanum Maxim (PZB) by ultrasonic-assisted extraction (UAE) in this work. Box–Behnken design–response surface methodology (BBD-RSM) was employed to research the efficiency of the RP extraction. Based on the optimizati...

Full description

Bibliographic Details
Main Authors: Xi Chen, Zhiqiang Wei, Lei Zhu, Xing Yuan, Daneng Wei, Wei Peng, Chunjie Wu
Format: Article
Language:English
Published: MDPI AG 2018-05-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/23/5/1109
Description
Summary:Red pigment (RP) was extracted from the peels of Zanthoxylum bungeanum Maxim (PZB) by ultrasonic-assisted extraction (UAE) in this work. Box–Behnken design–response surface methodology (BBD-RSM) was employed to research the efficiency of the RP extraction. Based on the optimization of RSM, results showed that the optimal extraction conditions were as follows: liquid–solid ratio of 31 mL/g, extraction time of 41 min, and extraction temperature of 27 °C, and under these conditions, the actual absorbance value was 0.615 ± 0.13%, highly agreeing with the predicted value by the model. Furthermore, ultra-performance liquid chromatography–mass spectrometry (UPLC-MS) was used to separate and analyze RP. The compounds of RP were mainly flavonoids, and there were five compounds detected for the first time in PZB. In addition, RP showed significant antioxidant activities in vitro, which could be developed for anti-aging candidate drugs and functional foods. In conclusion, ultrasound-assisted extraction with BBD-RSM and chromatographic separation technology with UPLC-MS are efficient strategies for the isolation and identification of RP from PZB.
ISSN:1420-3049