Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$
We study a volume related quantity $\mathrm{KVol}$ on the stratum ${\mathcal{H}(2)}$ of translation surfaces of genus $2$, with one conical point. We provide an explicit sequence $L(n, n)$ of surfaces such that $\mathrm{KVol}(L(n, n)) \rightarrow 2$ when n goes to infinity, $2$ being the conjectured...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2021-02-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.153/ |
Summary: | We study a volume related quantity $\mathrm{KVol}$ on the stratum ${\mathcal{H}(2)}$ of translation surfaces of genus $2$, with one conical point. We provide an explicit sequence $L(n, n)$ of surfaces such that $\mathrm{KVol}(L(n, n)) \rightarrow 2$ when n goes to infinity, $2$ being the conjectured infimum for $\mathrm{KVol}$ over ${\mathcal{H}(2)}$. |
---|---|
ISSN: | 1778-3569 |