Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$
We study a volume related quantity $\mathrm{KVol}$ on the stratum ${\mathcal{H}(2)}$ of translation surfaces of genus $2$, with one conical point. We provide an explicit sequence $L(n, n)$ of surfaces such that $\mathrm{KVol}(L(n, n)) \rightarrow 2$ when n goes to infinity, $2$ being the conjectured...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2021-02-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.153/ |
_version_ | 1797651552728514560 |
---|---|
author | Cheboui, Smail Kessi, Arezki Massart, Daniel |
author_facet | Cheboui, Smail Kessi, Arezki Massart, Daniel |
author_sort | Cheboui, Smail |
collection | DOAJ |
description | We study a volume related quantity $\mathrm{KVol}$ on the stratum ${\mathcal{H}(2)}$ of translation surfaces of genus $2$, with one conical point. We provide an explicit sequence $L(n, n)$ of surfaces such that $\mathrm{KVol}(L(n, n)) \rightarrow 2$ when n goes to infinity, $2$ being the conjectured infimum for $\mathrm{KVol}$ over ${\mathcal{H}(2)}$. |
first_indexed | 2024-03-11T16:17:28Z |
format | Article |
id | doaj.art-97360db350d345f4810e0612388d71f2 |
institution | Directory Open Access Journal |
issn | 1778-3569 |
language | English |
last_indexed | 2024-03-11T16:17:28Z |
publishDate | 2021-02-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj.art-97360db350d345f4810e0612388d71f22023-10-24T14:18:54ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692021-02-013591657010.5802/crmath.15310.5802/crmath.153Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$Cheboui, Smail0Kessi, Arezki1Massart, Daniel2IMAG, Univ Montpellier, CNRS, Montpellier, France; USTHB, Faculté de Mathématiques, Laboratoire de Systèmes Dynamiques, 16111 El-Alia BabEzzouar, Alger, AlgérieUSTHB, Faculté de Mathématiques, Laboratoire de Systèmes Dynamiques, 16111 El-Alia BabEzzouar, Alger, AlgérieIMAG, Univ Montpellier, CNRS, Montpellier, FranceWe study a volume related quantity $\mathrm{KVol}$ on the stratum ${\mathcal{H}(2)}$ of translation surfaces of genus $2$, with one conical point. We provide an explicit sequence $L(n, n)$ of surfaces such that $\mathrm{KVol}(L(n, n)) \rightarrow 2$ when n goes to infinity, $2$ being the conjectured infimum for $\mathrm{KVol}$ over ${\mathcal{H}(2)}$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.153/ |
spellingShingle | Cheboui, Smail Kessi, Arezki Massart, Daniel Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$ Comptes Rendus. Mathématique |
title | Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$ |
title_full | Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$ |
title_fullStr | Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$ |
title_full_unstemmed | Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$ |
title_short | Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$ |
title_sort | algebraic intersection for translation surfaces in the stratum protect mathcal h 2 |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.153/ |
work_keys_str_mv | AT chebouismail algebraicintersectionfortranslationsurfacesinthestratumprotectmathcalh2 AT kessiarezki algebraicintersectionfortranslationsurfacesinthestratumprotectmathcalh2 AT massartdaniel algebraicintersectionfortranslationsurfacesinthestratumprotectmathcalh2 |