Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$

We study a volume related quantity $\mathrm{KVol}$ on the stratum ${\mathcal{H}(2)}$ of translation surfaces of genus $2$, with one conical point. We provide an explicit sequence $L(n, n)$ of surfaces such that $\mathrm{KVol}(L(n, n)) \rightarrow 2$ when n goes to infinity, $2$ being the conjectured...

Full description

Bibliographic Details
Main Authors: Cheboui, Smail, Kessi, Arezki, Massart, Daniel
Format: Article
Language:English
Published: Académie des sciences 2021-02-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.153/
_version_ 1797651552728514560
author Cheboui, Smail
Kessi, Arezki
Massart, Daniel
author_facet Cheboui, Smail
Kessi, Arezki
Massart, Daniel
author_sort Cheboui, Smail
collection DOAJ
description We study a volume related quantity $\mathrm{KVol}$ on the stratum ${\mathcal{H}(2)}$ of translation surfaces of genus $2$, with one conical point. We provide an explicit sequence $L(n, n)$ of surfaces such that $\mathrm{KVol}(L(n, n)) \rightarrow 2$ when n goes to infinity, $2$ being the conjectured infimum for $\mathrm{KVol}$ over ${\mathcal{H}(2)}$.
first_indexed 2024-03-11T16:17:28Z
format Article
id doaj.art-97360db350d345f4810e0612388d71f2
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-11T16:17:28Z
publishDate 2021-02-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-97360db350d345f4810e0612388d71f22023-10-24T14:18:54ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692021-02-013591657010.5802/crmath.15310.5802/crmath.153Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$Cheboui, Smail0Kessi, Arezki1Massart, Daniel2IMAG, Univ Montpellier, CNRS, Montpellier, France; USTHB, Faculté de Mathématiques, Laboratoire de Systèmes Dynamiques, 16111 El-Alia BabEzzouar, Alger, AlgérieUSTHB, Faculté de Mathématiques, Laboratoire de Systèmes Dynamiques, 16111 El-Alia BabEzzouar, Alger, AlgérieIMAG, Univ Montpellier, CNRS, Montpellier, FranceWe study a volume related quantity $\mathrm{KVol}$ on the stratum ${\mathcal{H}(2)}$ of translation surfaces of genus $2$, with one conical point. We provide an explicit sequence $L(n, n)$ of surfaces such that $\mathrm{KVol}(L(n, n)) \rightarrow 2$ when n goes to infinity, $2$ being the conjectured infimum for $\mathrm{KVol}$ over ${\mathcal{H}(2)}$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.153/
spellingShingle Cheboui, Smail
Kessi, Arezki
Massart, Daniel
Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$
Comptes Rendus. Mathématique
title Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$
title_full Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$
title_fullStr Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$
title_full_unstemmed Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$
title_short Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$
title_sort algebraic intersection for translation surfaces in the stratum protect mathcal h 2
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.153/
work_keys_str_mv AT chebouismail algebraicintersectionfortranslationsurfacesinthestratumprotectmathcalh2
AT kessiarezki algebraicintersectionfortranslationsurfacesinthestratumprotectmathcalh2
AT massartdaniel algebraicintersectionfortranslationsurfacesinthestratumprotectmathcalh2