A generalizable deep voxel-guided morphometry algorithm for the detection of subtle lesion dynamics in multiple sclerosis

IntroductionMultiple sclerosis (MS) is a chronic neurological disorder characterized by the progressive loss of myelin and axonal structures in the central nervous system. Accurate detection and monitoring of MS-related changes in brain structures are crucial for disease management and treatment eva...

Full description

Bibliographic Details
Main Authors: Anish Raj, Achim Gass, Philipp Eisele, Andreas Dabringhaus, Matthias Kraemer, Frank G. Zöllner
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-01-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnins.2024.1326108/full
_version_ 1827375022076854272
author Anish Raj
Anish Raj
Achim Gass
Achim Gass
Philipp Eisele
Philipp Eisele
Andreas Dabringhaus
Matthias Kraemer
Matthias Kraemer
Frank G. Zöllner
Frank G. Zöllner
author_facet Anish Raj
Anish Raj
Achim Gass
Achim Gass
Philipp Eisele
Philipp Eisele
Andreas Dabringhaus
Matthias Kraemer
Matthias Kraemer
Frank G. Zöllner
Frank G. Zöllner
author_sort Anish Raj
collection DOAJ
description IntroductionMultiple sclerosis (MS) is a chronic neurological disorder characterized by the progressive loss of myelin and axonal structures in the central nervous system. Accurate detection and monitoring of MS-related changes in brain structures are crucial for disease management and treatment evaluation. We propose a deep learning algorithm for creating Voxel-Guided Morphometry (VGM) maps from longitudinal MRI brain volumes for analyzing MS disease activity. Our approach focuses on developing a generalizable model that can effectively be applied to unseen datasets.MethodsLongitudinal MS patient high-resolution 3D T1-weighted follow-up imaging from three different MRI systems were analyzed. We employed a 3D residual U-Net architecture with attention mechanisms. The U-Net serves as the backbone, enabling spatial feature extraction from MRI volumes. Attention mechanisms are integrated to enhance the model's ability to capture relevant information and highlight salient regions. Furthermore, we incorporate image normalization by histogram matching and resampling techniques to improve the networks' ability to generalize to unseen datasets from different MRI systems across imaging centers. This ensures robust performance across diverse data sources.ResultsNumerous experiments were conducted using a dataset of 71 longitudinal MRI brain volumes of MS patients. Our approach demonstrated a significant improvement of 4.3% in mean absolute error (MAE) against the state-of-the-art (SOTA) method. Furthermore, the algorithm's generalizability was evaluated on two unseen datasets (n = 116) with an average improvement of 4.2% in MAE over the SOTA approach.DiscussionResults confirm that the proposed approach is fast and robust and has the potential for broader clinical applicability.
first_indexed 2024-03-08T11:43:36Z
format Article
id doaj.art-973da63c3d0143b79e8f85afaf8d67ad
institution Directory Open Access Journal
issn 1662-453X
language English
last_indexed 2024-03-08T11:43:36Z
publishDate 2024-01-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neuroscience
spelling doaj.art-973da63c3d0143b79e8f85afaf8d67ad2024-01-25T04:22:04ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2024-01-011810.3389/fnins.2024.13261081326108A generalizable deep voxel-guided morphometry algorithm for the detection of subtle lesion dynamics in multiple sclerosisAnish Raj0Anish Raj1Achim Gass2Achim Gass3Philipp Eisele4Philipp Eisele5Andreas Dabringhaus6Matthias Kraemer7Matthias Kraemer8Frank G. Zöllner9Frank G. Zöllner10Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Württemberg, GermanyMannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Württemberg, GermanyDepartment of Neurology, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Württemberg, GermanyMannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Baden Württemberg, GermanyDepartment of Neurology, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Württemberg, GermanyMannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Baden Württemberg, GermanyVGMorph GmbH, Mülheim an der Ruhr, Nordrhein-Westfalen, GermanyVGMorph GmbH, Mülheim an der Ruhr, Nordrhein-Westfalen, GermanyNeuroCentrum, Grevenbroich, Nordrhein-Westfalen, GermanyComputer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Württemberg, GermanyMannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Württemberg, GermanyIntroductionMultiple sclerosis (MS) is a chronic neurological disorder characterized by the progressive loss of myelin and axonal structures in the central nervous system. Accurate detection and monitoring of MS-related changes in brain structures are crucial for disease management and treatment evaluation. We propose a deep learning algorithm for creating Voxel-Guided Morphometry (VGM) maps from longitudinal MRI brain volumes for analyzing MS disease activity. Our approach focuses on developing a generalizable model that can effectively be applied to unseen datasets.MethodsLongitudinal MS patient high-resolution 3D T1-weighted follow-up imaging from three different MRI systems were analyzed. We employed a 3D residual U-Net architecture with attention mechanisms. The U-Net serves as the backbone, enabling spatial feature extraction from MRI volumes. Attention mechanisms are integrated to enhance the model's ability to capture relevant information and highlight salient regions. Furthermore, we incorporate image normalization by histogram matching and resampling techniques to improve the networks' ability to generalize to unseen datasets from different MRI systems across imaging centers. This ensures robust performance across diverse data sources.ResultsNumerous experiments were conducted using a dataset of 71 longitudinal MRI brain volumes of MS patients. Our approach demonstrated a significant improvement of 4.3% in mean absolute error (MAE) against the state-of-the-art (SOTA) method. Furthermore, the algorithm's generalizability was evaluated on two unseen datasets (n = 116) with an average improvement of 4.2% in MAE over the SOTA approach.DiscussionResults confirm that the proposed approach is fast and robust and has the potential for broader clinical applicability.https://www.frontiersin.org/articles/10.3389/fnins.2024.1326108/fullmultiple sclerosisdeep learningbrain MRIvoxel-guided morphometrylongitudinal change detection mapattention mechanism
spellingShingle Anish Raj
Anish Raj
Achim Gass
Achim Gass
Philipp Eisele
Philipp Eisele
Andreas Dabringhaus
Matthias Kraemer
Matthias Kraemer
Frank G. Zöllner
Frank G. Zöllner
A generalizable deep voxel-guided morphometry algorithm for the detection of subtle lesion dynamics in multiple sclerosis
Frontiers in Neuroscience
multiple sclerosis
deep learning
brain MRI
voxel-guided morphometry
longitudinal change detection map
attention mechanism
title A generalizable deep voxel-guided morphometry algorithm for the detection of subtle lesion dynamics in multiple sclerosis
title_full A generalizable deep voxel-guided morphometry algorithm for the detection of subtle lesion dynamics in multiple sclerosis
title_fullStr A generalizable deep voxel-guided morphometry algorithm for the detection of subtle lesion dynamics in multiple sclerosis
title_full_unstemmed A generalizable deep voxel-guided morphometry algorithm for the detection of subtle lesion dynamics in multiple sclerosis
title_short A generalizable deep voxel-guided morphometry algorithm for the detection of subtle lesion dynamics in multiple sclerosis
title_sort generalizable deep voxel guided morphometry algorithm for the detection of subtle lesion dynamics in multiple sclerosis
topic multiple sclerosis
deep learning
brain MRI
voxel-guided morphometry
longitudinal change detection map
attention mechanism
url https://www.frontiersin.org/articles/10.3389/fnins.2024.1326108/full
work_keys_str_mv AT anishraj ageneralizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT anishraj ageneralizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT achimgass ageneralizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT achimgass ageneralizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT philippeisele ageneralizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT philippeisele ageneralizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT andreasdabringhaus ageneralizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT matthiaskraemer ageneralizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT matthiaskraemer ageneralizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT frankgzollner ageneralizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT frankgzollner ageneralizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT anishraj generalizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT anishraj generalizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT achimgass generalizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT achimgass generalizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT philippeisele generalizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT philippeisele generalizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT andreasdabringhaus generalizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT matthiaskraemer generalizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT matthiaskraemer generalizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT frankgzollner generalizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis
AT frankgzollner generalizabledeepvoxelguidedmorphometryalgorithmforthedetectionofsubtlelesiondynamicsinmultiplesclerosis