Parametric study on ship’s exhaust-gas behavior using computational fluid dynamics
The influence of design parameters related to a ship’s exhaust-gas behavior was investigated using computational fluid dynamics (CFD) for an 8,000 TEU container carrier. To verify the numerical methods, the results were studied by comparing with experimental results. Several test conditions, i.e. va...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2017-01-01
|
Series: | Engineering Applications of Computational Fluid Mechanics |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/19942060.2016.1260057 |
Summary: | The influence of design parameters related to a ship’s exhaust-gas behavior was investigated using computational fluid dynamics (CFD) for an 8,000 TEU container carrier. To verify the numerical methods, the results were studied by comparing with experimental results. Several test conditions, i.e. various load conditions of ship, wind angle, deckhouse breadth, radar mast height, and exhaust-pipe height and shape were considered for a ship’s exhaust gas flow around the 8,000 TEU container carrier. The influence of the design parameters on contamination by the exhaust gas was quantified, after which the principal parameters to avoid contamination were selected. Finally, the design guideline of yP/H = 2 was suggested to avoid the contamination from the ship’s exhaust gas using the CFD results, model tests, and sea trials. |
---|---|
ISSN: | 1994-2060 1997-003X |