Knowledge Extraction and Quality Inspection of Chinese Petrographic Description Texts with Complex Entities and Relations Using Machine Reading and Knowledge Graph: A Preliminary Research Study

(1) Background: Geological surveying is undergoing a digital transformation process towards the adoption of intelligent methods in China. Cognitive intelligence methods, such as those based on knowledge graphs and machine reading, have made progress in many domains and also provide a technical basis...

Full description

Bibliographic Details
Main Authors: Zhongliang Chen, Feng Yuan, Xiaohui Li, Xiang Wang, He Li, Bangcai Wu, Yuheng Chen
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/12/9/1080
Description
Summary:(1) Background: Geological surveying is undergoing a digital transformation process towards the adoption of intelligent methods in China. Cognitive intelligence methods, such as those based on knowledge graphs and machine reading, have made progress in many domains and also provide a technical basis for quality detection in unstructured lithographic description texts. (2) Methods: First, the named entities and the relations of the domain-specific knowledge graph of petrography were defined based on the petrographic theory. Second, research was carried out based on a manually annotated corpus of petrographic description. The extraction of <i>N</i>-ary and single-entity overlapping relations and the separation of complex entities are key steps in this process. Third, a petrographic knowledge graph was formulated based on prior knowledge. Finally, the consistency between knowledge triples extracted from the corpus and the petrographic knowledge graph was calculated. The 1:50,000 sheet of Fengxiangyi located in the Dabie orogenic belt was selected for the empirical research. (3) Results: Using machine reading and the knowledge graph, petrographic knowledge can be extracted and the knowledge consistency calculation can quickly detect description errors about textures, structures and mineral components in petrographic description. (4) Conclusions: The proposed framework can be used to realise the intelligent inspection of petrographic knowledge with complex entities and relations and to improve the quality of petrographic description texts effectively.
ISSN:2075-163X