Summary: | In this paper, we give an efficient way to calculate the values of the Mittag–Leffler (<i>h</i>-ML) function defined in discrete time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>h</mi><mi mathvariant="double-struck">N</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>h</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> is a real number. We construct a matrix equation that represents an iteration scheme obtained from a fractional <i>h</i>-difference equation with an initial condition. Fractional <i>h</i>-discrete operators are defined according to the Nabla operator and the Riemann–Liouville definition. Some figures and examples are given to illustrate this new calculation technique for the <i>h</i>-ML function in discrete time. The <i>h</i>-ML function with a square matrix variable in a square matrix form is also given after proving the Putzer algorithm.
|