Contribution from Selected Organic Species to PM2.5 Aerosol during a Summer Field Campaign at K-Puszta, Hungary

A summer field campaign was conducted at the forested background site of K-puszta in Hungary. The main aim was to assess the contribution of terpene-derived particulate organic compounds to the PM2.5 organic carbon (OC) and of the secondary organic carbon (SOC) from α-pinene to the OC. The study las...

Full description

Bibliographic Details
Main Authors: Willy Maenhaut, Xuguang Chi, Wan Wang, Jan Cafmeyer, Farhat Yasmeen, Reinhilde Vermeylen, Katarzyna Szmigielska, Ivan A. Janssens, Magda Claeys
Format: Article
Language:English
Published: MDPI AG 2017-11-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/8/11/221
Description
Summary:A summer field campaign was conducted at the forested background site of K-puszta in Hungary. The main aim was to assess the contribution of terpene-derived particulate organic compounds to the PM2.5 organic carbon (OC) and of the secondary organic carbon (SOC) from α-pinene to the OC. The study lasted from 24 May to 29 June 2006; the first half the weather was cold, while the second half was warm. Separate daytime and night-time PM2.5 samples were collected with a high-volume sampler and the samples were analysed by several analytical techniques, including ion chromatography (IC) and liquid chromatography–mass spectrometry (LC/MS). The latter technique was used for measuring the terpene-derived species. Ancillary high time resolution measurements of volatile organic compounds (VOCs) were made with proton-transfer reaction–mass spectrometry. The temporal and diurnal variability of the particulate compounds and VOCs and interrelationships were examined. It was found that the monoterpenes and a number of terpene-derived particulate compounds, such as cis-pinic and cis-caric acid, exhibited a strong day/night difference during the warm period, with about 10 times higher levels during the night-time. During the warm period, the IC compounds and LC/MS compounds accounted, on average, for 3.1% and 2.0%, respectively, of the OC, whereas the contribution of SOC from α-pinene to the OC was estimated at a minimum of 7.1%.
ISSN:2073-4433