Quartz-Enhanced Photoacoustic Spectroscopy Assisted by Partial Least-Squares Regression for Multi-Gas Measurements
We report on the use of quartz-enhanced photoacoustic spectroscopy (QEPAS) for multi-gas detection. Photoacoustic (PA) spectra of mixtures of water (H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mro...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-09-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/23/18/7984 |
_version_ | 1797576988879224832 |
---|---|
author | Andreas N. Rasmussen Benjamin L. Thomsen Jesper B. Christensen Jan C. Petersen Mikael Lassen |
author_facet | Andreas N. Rasmussen Benjamin L. Thomsen Jesper B. Christensen Jan C. Petersen Mikael Lassen |
author_sort | Andreas N. Rasmussen |
collection | DOAJ |
description | We report on the use of quartz-enhanced photoacoustic spectroscopy (QEPAS) for multi-gas detection. Photoacoustic (PA) spectra of mixtures of water (H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O), ammonia (NH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>), and methane (CH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>) were measured in the mid-infrared (MIR) wavelength range using a mid-infrared (MIR) optical parametric oscillator (OPO) light source. Highly overlapping absorption spectra are a common challenge for gas spectroscopy. To mitigate this, we used a partial least-squares regression (PLS) method to estimate the mixing ratio and concentrations of the individual gasses. The concentration range explored in the analysis varies from a few parts per million (ppm) to thousands of ppm. Spectra obtained from HITRAN and experimental single-molecule reference spectra of each of the molecular species were acquired and used as training data sets. These spectra were used to generate simulated spectra of the gas mixtures (linear combinations of the reference spectra). Here, in this proof-of-concept experiment, we demonstrate that after an absolute calibration of the QEPAS cell, the PLS analyses could be used to determine concentrations of single molecular species with a relative accuracy within a few % for mixtures of H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O, NH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>, and CH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and with an absolute sensitivity of approximately 300 (±50) ppm/V, 50 (±5) ppm/V, and 5 (±2) ppm/V for water, ammonia, and methane, respectively. This demonstrates that QEPAS assisted by PLS is a powerful approach to estimate concentrations of individual gas components with considerable spectral overlap, which is a typical scenario for real-life adoptions and applications. |
first_indexed | 2024-03-10T22:01:35Z |
format | Article |
id | doaj.art-9756b746cefa4004ba33a13ec25625fe |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-10T22:01:35Z |
publishDate | 2023-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-9756b746cefa4004ba33a13ec25625fe2023-11-19T12:57:01ZengMDPI AGSensors1424-82202023-09-012318798410.3390/s23187984Quartz-Enhanced Photoacoustic Spectroscopy Assisted by Partial Least-Squares Regression for Multi-Gas MeasurementsAndreas N. Rasmussen0Benjamin L. Thomsen1Jesper B. Christensen2Jan C. Petersen3Mikael Lassen4Danish Fundamental Metrology, Kogle Allé 5, 2970 Hørsholm, DenmarkDanish Fundamental Metrology, Kogle Allé 5, 2970 Hørsholm, DenmarkDanish Fundamental Metrology, Kogle Allé 5, 2970 Hørsholm, DenmarkDanish Fundamental Metrology, Kogle Allé 5, 2970 Hørsholm, DenmarkDanish Fundamental Metrology, Kogle Allé 5, 2970 Hørsholm, DenmarkWe report on the use of quartz-enhanced photoacoustic spectroscopy (QEPAS) for multi-gas detection. Photoacoustic (PA) spectra of mixtures of water (H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O), ammonia (NH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>), and methane (CH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>) were measured in the mid-infrared (MIR) wavelength range using a mid-infrared (MIR) optical parametric oscillator (OPO) light source. Highly overlapping absorption spectra are a common challenge for gas spectroscopy. To mitigate this, we used a partial least-squares regression (PLS) method to estimate the mixing ratio and concentrations of the individual gasses. The concentration range explored in the analysis varies from a few parts per million (ppm) to thousands of ppm. Spectra obtained from HITRAN and experimental single-molecule reference spectra of each of the molecular species were acquired and used as training data sets. These spectra were used to generate simulated spectra of the gas mixtures (linear combinations of the reference spectra). Here, in this proof-of-concept experiment, we demonstrate that after an absolute calibration of the QEPAS cell, the PLS analyses could be used to determine concentrations of single molecular species with a relative accuracy within a few % for mixtures of H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O, NH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>, and CH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and with an absolute sensitivity of approximately 300 (±50) ppm/V, 50 (±5) ppm/V, and 5 (±2) ppm/V for water, ammonia, and methane, respectively. This demonstrates that QEPAS assisted by PLS is a powerful approach to estimate concentrations of individual gas components with considerable spectral overlap, which is a typical scenario for real-life adoptions and applications.https://www.mdpi.com/1424-8220/23/18/7984photoacousticsgas spectroscopymachine learning techniquepartial least-squares regressionenvironmental sensorsmethane |
spellingShingle | Andreas N. Rasmussen Benjamin L. Thomsen Jesper B. Christensen Jan C. Petersen Mikael Lassen Quartz-Enhanced Photoacoustic Spectroscopy Assisted by Partial Least-Squares Regression for Multi-Gas Measurements Sensors photoacoustics gas spectroscopy machine learning technique partial least-squares regression environmental sensors methane |
title | Quartz-Enhanced Photoacoustic Spectroscopy Assisted by Partial Least-Squares Regression for Multi-Gas Measurements |
title_full | Quartz-Enhanced Photoacoustic Spectroscopy Assisted by Partial Least-Squares Regression for Multi-Gas Measurements |
title_fullStr | Quartz-Enhanced Photoacoustic Spectroscopy Assisted by Partial Least-Squares Regression for Multi-Gas Measurements |
title_full_unstemmed | Quartz-Enhanced Photoacoustic Spectroscopy Assisted by Partial Least-Squares Regression for Multi-Gas Measurements |
title_short | Quartz-Enhanced Photoacoustic Spectroscopy Assisted by Partial Least-Squares Regression for Multi-Gas Measurements |
title_sort | quartz enhanced photoacoustic spectroscopy assisted by partial least squares regression for multi gas measurements |
topic | photoacoustics gas spectroscopy machine learning technique partial least-squares regression environmental sensors methane |
url | https://www.mdpi.com/1424-8220/23/18/7984 |
work_keys_str_mv | AT andreasnrasmussen quartzenhancedphotoacousticspectroscopyassistedbypartialleastsquaresregressionformultigasmeasurements AT benjaminlthomsen quartzenhancedphotoacousticspectroscopyassistedbypartialleastsquaresregressionformultigasmeasurements AT jesperbchristensen quartzenhancedphotoacousticspectroscopyassistedbypartialleastsquaresregressionformultigasmeasurements AT jancpetersen quartzenhancedphotoacousticspectroscopyassistedbypartialleastsquaresregressionformultigasmeasurements AT mikaellassen quartzenhancedphotoacousticspectroscopyassistedbypartialleastsquaresregressionformultigasmeasurements |